

EVOLVABLE HARDWARE IN XILINX XCR3064 CPLD

Rustem Popa

”Dunarea de Jos” University of Galati,
Department of Electronics and Telecommunications,

Domneasca Street – 111, Galati, Romania
E-mail: Rustem.Popa@ugal.ro

Abstract: Evolvable Hardware (EHW) is a hardware which modifies its own structure in
order to adapt to the environment in which it is embedded. This reconfigurable hardware
is implemented on a programmable circuit, whose architecture can be altered by
downloading a binary bit string. These bits are adaptively acquired by evolutionary
algorithms. In this paper we have used an evolutionary algorithm to design some
combinational and sequential logic circuits. These designs have been implemented in a
real Xilinx XCR3064 CPLD and have been compared with other designs created by
manual methods or other heuristic techniques. A better fitting of circuit resources have
been observed in almost all evolutionary designs. Copyright © 2004 IFAC

Keywords: Boolean functions, Genetic algorithms, Programmable integrated circuits,
Sequential machines, State assignment.

1. INTRODUCTION

EHW is a hardware built on a software
reconfigurable logic device, such as Programmable
Logic Device (PLD) or Field Programmable Gate
Array (FPGA). In these circuits the logic design is
compiled into a binary bit string. By changing the
bits, arbitrary hardware structures can be
implemented instantly. The key idea is to regard such
a bit string as a chromosome of a genetical
algorithm. Through genetic learning, EHW finds the
best bit string and reconfigures itself according to
rewards received from the environment. In this way,
the hardware structure is adaptively searched by
genetic algorithm (GA). This basic idea of EHW is
illustrated in the figure 1.

The traditional design process is top-down and
begins with a precise specification. EHW is
applicable even when no hardware specification is
known before. Its implementation is determined
through a genetic learning in a bottom-up way. GA is
meant to mimic Darwinian evolution. A population
of candidates is maintained, and goes through a
series of generations. For each new generation, some

of the existing candidates survive, while others are
created by a type of reproduction and mutation from
a set of parents. EHW combine knowledge of both
GA and logic design to evolve circuits.

Research in EHW can be divided into intrinsic
evolution, which refers to an evolutionary process in
which each circuit is built in electronic hardware and
tested, and extrinsic evolution, that uses a model of
the hardware and evaluates it by simulation in
software.

In this paper we have shown that evolutionary design
is favourably against the traditional design in
Complex PLD (CPLD) implementation. We have
used only extrinsic evolution, but the circuits
generated in this way have been tested in a real
Xilinx XCR3064 CoolRunner CPLD by using the
Xilinx ISE 6.1i software. The remaining sections of
the paper are organised as follows: Section 2
describes in more detail the genetic learning
component of the EHW. Section 3 shows some
examples of combinational and sequential circuits
and their implementation by using of traditional and
then evolutionary design techniques. All these
.

Fig. 1. The basic idea of EHW. A binary bit string,

called “architecture bits”, is modified by
evolution. Each new string of “architecture bits”
implements a new electronic circuit in PLD.

circuits have been implemented in a 64 macrocell
Xilinx CPLD. These experimental results are given
in Section 4. Finally, Section 5 provides the
conclusions and future work.

2. GENETIC LEARNING IN EHW

The genotype of an evolved structure on PLD basis
is given by the bits for fuse array and bits for logic
cells. However, this genotype representation has
inherent limitations, since the fuse array bits are fully
included in the genotype, even in the case that only a
few bits are effective. Iba, et al. (1996), has
introduced the variable length chromosome, a short
chromosome that can increase the maximum size of
the evolved circuit. Α tiny different method for
chromosome representation, by using only the
essential number of minterms, was proposed by Popa
and Iliev (1999). In this way, this method can reduce
the chromosome length and establish an efficient
adaptive search.

All the developed algorithms in this paper are based
on the fundamental structure of a GA. The initial
population of chromosomes (bit strings) is generated
randomly. All these potential solutions are evaluated
using a fitness function. In our case, for a single
boolean function, fitness is the ratio between the
number of the correct values of the function and the
number of all possible values (which is n2 , if the
boolean function has n input variables). A well-
designed circuit will be obtained only when the value
of fitness is 100%. An approximately value of the
fitness is unacceptable here.

The next step is selection and reproduction. For each
individual, a number of copies are made,
proportional to its fitness, while keeping the
population size constant. The least fit individuals are
deleted. This is the survival of the fittest part of the
GA.

The next step is crossover, where individuals are
chosen two at a time, as parents. They are converted
into two new individuals, called offsprings, by
exchanging parts of their structure. Thus, each
offspring inherits a combination of features from
both parents. We have obtained the best results with
one point crossover, with a probability of 80%. This
operator may be used more times on different
selected pairs of chromosomes in a generation.

X(t)
Inputs

Outputs

Y(t)

S(t)

S(t +1)

Subcircuit
A

Register

Subcircuit
B

Fig. 2. A finite state machine may be divided into
purely combinational blocks (subcircuits A and
B) and register.

The next step is mutation. A small change is made to
each resultant offspring, with a small probability.
After mutation is performed on an individual, it no
longer has just the combination of features inherited
from its two parents, but also incorporates the
additional change caused by mutation. This ensures
that the algorithm can explore new features that may
not yet be in the population. It makes the entire
search space reachable despite the finite population
size. The whole process is repeated for several
generations, and, if the best chromosome in
population will have the fitness of 100%, then this bit
string represents a good solution for our function.

3. SOME EVOLUTIONARY DESIGNS

The first successful evolved circuits have been the
digital combinational logic circuits. The evolution of
sequential logic circuits is considerably less mature.
The complexity of circuit connections and encoding
chromosomes to evolve the sequential logic circuit
may be one of the reasons that not much work has
been done in this area (Ali, et al., 2004).

As we can see from the figure 2, the sequential
circuits may be divided into purely combinational
blocks and registers. Large sequential circuits are
typically modelled by smaller interacting finite state
machines (FSMs). A FSM is defined as a
mathematical model of a system with discrete inputs,
discrete outputs and a finite number of internal
configurations or states. The states of a system
completely summarise the information concerning
past inputs to the system that is needed to determine
its behaviour on subsequent inputs.

In the first subsection we have shown the design of a
boolean function of 3 variables. In the next two, we
have used different ways to design the combinational
blocks of the two distinct FSMs.

1 0

1

S/Y
X

S0: 000
S1: 010
S2: 001
S3: 100
S4: 110
S5: 101

S0/0

S1/0

S2/0

S3/1

S4/1

S5/1

1

0

0

1 0

1

0

0

1

Fig. 3. A sequence detector described as state
transition graph and GA state assignment.

3.1 The Implementation of a Boolean Function

We have considered a boolean function represented
in a minimal disjunctive form by using a Karnaugh
map:

3231321 xxxxxxxf ⋅+⋅+⋅⋅= (1)

This representation has a cost of 7 gates and 13
inputs, including inverters. By applying some
switching-algebra theorems our function may be
written in the next form:

213 xxxf ⋅⊕= (2)

Now, the cost of implementation is only of 3 gates
and 5 inputs. Unfortunately, there is no algorithm to
find this convenient form of the function, only the
heuristics and experience of the human designer.

We have tried to find another representation of this
function by evolutionary design. We have used the
idea given in Coello, et al. (2000). Each
combinational circuit is represented as a rectangular
array of logic gates. Each of these gates has two
inputs and one output, and the logic operator may be
selected from a list. At the beginning of the search,
all the gates from the matrix are disposable to
implement a functional circuit. Once a functional
solution appears, then the fitness function is modified
such that any valid designs produced are rewarded
for each gate which is replaced by a simple wire. The
algorithm tries to find the circuit with the maximum
number of gates replaced by wires that performs the
function required.

The chromosome defines the connection in the
network between the primary inputs and primary
outputs. We have used a network of 4 gates, a
population of 32 chromosomes, 10 of them beeing
changed each generation, a single point 100%
crossover and 5% rate mutation.

S

S0: 000
S1: 001
S2: 010
S3: 011
S4: 100
S5: 110

S0

S1

S2

S3

S4

S5

Yi

Xi or Xi

i = 1,2,3,4

X1

X2

X3

X4

Y1

Y2

Y3

Y4

X1

X2X3

X4

X4

Fig. 4. A computer interface described as state
transition graph and manual state assignment.

A feasible solution has been obtained in less than 100
generations. This function may be written as:

3121 xxxxf ⊕+⊕= (3)

We can see that, in this case, the cost is of 3 inverting
gates and 6 inputs, and this solution has the minimum
delay time between any input and the output of the
circuit, in a gate level implementation.

Finally, the most extended representation of this
function is the disjunctive canonical form, with a
total cost of 9 gates and 23 inputs. We have
implemented all these four different equations of the
function in a real programmable circuit and the
results are compared in Section 4.

3.2 The Implementation of a Sequence Detector

The FSM represented in the figure 3 is a sequence
detector with one-input, one-output and 6-internal
states. When the input sequence 011 occurs, the
output becomes 1 and remains on this logic value
until sequence 011 occur again. In this case, the
output returns to 0, and maintain this value, until a
new sequence 011 appears. This circuit has been
described in Ali, et al. (2004).

Firstly a GA has been used to find optimal state
assignment. An example of state assignment
generated in this way is shown in the figure 3. The
chromosome represents the FSM as a list of states.
The goal of the GA is to extract the optimum state
assignment, which requires the least number of logic
gates. A more detailed description of this problem is
presented in Ali, et al. (2004).

Then, the extrinsic EHW has been used to find the
functional design of combinational parts of the
sequence detector. The two subcircuits, A and B, are
evolved by using the method presented in the
subsection 3.1 and in Coello, et al. (2000).

D Q

Q

D Q

Q

D Q

Q

1

2

0
CLK

X

Y

Subcircuit A

Subcircuit B

Fig. 5. Evolved optimal circuit solution of the
sequence detector (first solution).

The equations of the evolved optimal combinational
circuit, as they have obtained by Ali, et al. (2004),
are the following (see figure 5):

022022 QQxQxQQD ⋅⋅+⋅+⋅= (4)

xD =1 (5)

10 QxD ⋅= (6)

2Qy = (7)

We have used different notations for the present and
the future states of the flip-flops, and for output
function, according to Wakerly (2000).

A second evolved solution has been obtained with
another state assignment: S0 – 000, S1 – 001, S2 –
011, S3 – 111, S4 – 110 and S5 – 100. The schematic
diagram of the circuit is given in the figure 6, and the
equations of the combinational circuit are:

122 QxQxD ⋅+⋅= (8)

021 QxQxD ⋅+⋅= (9)

010 QxQxD ⋅+⋅= (10)

0Qy = (11)

A bad state assignment may conduct to much more
complex boolean functions for the subcircuits A and
B: if S0 – 000, S1 – 001, S2 – 010, S3 – 011, S4 –
100 and S5 – 101, then the equations are:

010222 QQxQQQxD ⋅⋅+⋅+⋅= (12)

0211 QQxQxD ⋅⋅+⋅= (13)

12020110 QQxQQxQQQxD ⋅⋅+⋅⋅+⋅+⋅= (14)

012 QQQy ⋅+= (15)

These latest equations have been obtained by manual
design, by using Karnaugh maps. All these three
solutions have been implemented in a CPLD and the
results are discussed in Section 4.

D Q

Q

D Q

Q

D Q

Q

1

2

0
CLK

X

Y

Subcircuit B

Subcircuit A

Fig. 6. Evolved optimal circuit solution of the
sequence detector (second solution).

3.3 The Implementation of a Computer Interface

The FSM represented in the figure 4 is a computer
interface for serial communication between two
computers. A transition from one state to another
depends from only one of the 4 inputs 4,1, =ixi .
The circuit has 4 outputs, each of them beeing in 1
logic only in a single state. The FSM has 6 states and
has been presented in Popa and Iliev (1999).

With the state assignment given in the figure 4, the
traditional design of this circuit gives the following
equations for the subcircuit A:

120132 QQQQxD ⋅+⋅⋅= (16)

01240121 QQQxQQxD ⋅+⋅+⋅⋅= (17)

010120210 QQQQxQQxD ⋅+⋅⋅+⋅⋅= (18)

The subcircuit B, or the output functions, are given
by the following equations:

011 QQy ⋅= (19)

0122 QQQy ⋅⋅= (20)

123 QQy ⋅= (21)

124 QQy ⋅= (22)

For the evolutionary design of this circuit we have
preferred a complete different way than in previous
subsection. Each of these boolean functions has a
maximum number of 5 inputs and a maximum
number of 4 minterms. If we want to implement
these functions in a PLD structure (an AND array
and logic cells configurable as OR gate), then the
number of fuse array links is 2 5 4 40⋅ ⋅ = , and we
may to consider this number as the total length of the
chromosome.

Fig. 7. The evolution of the excitation functions of
the computer interface.

Our GA is a standard one, with the population size of
30 chromosomes. One point crossover is executed
with a probability of 80% and the mutation rate is
2%. Six worse chromosomes are replaced each
generation. The stop criterion is the number of
generations.

Our circuit has 3 excitations functions, += ii QD ,
with i = 1, 2, 3, and 4 output functions, iy , with i =
1, 2, 3, and 4 . Figure 7 reflects the evolution of the
circuit for the first 3 functions. However, this circuit
is built from 3 independent circuits, each generating
one output bit. Therefore, the evolution of a circuit
with one output bit is repeated 3 times. The Y axis is
the correct answer rate. If it reaches 100%, then the
hardware evolution succeeds. All 3 circuits are
successfully obtained in less than 500 generations.

In the same way, figure 8 reflects the evolution of the
circuit for the output functions. The evolution
succeeds after a less number of generations because
the total search space is in this case much lower than
in previous case (all the output functions have only 3
variables).

Evolution may provide some non-minimal
expressions for these boolean functions, but
minimization is not necessary for PLD
implementations. The length of the chromosomes is
greater than the optimal one, and the evolved
equations are much more complicated than the given
equations from (16) to (22). The complete cost of the
whole combinational circuit is consisted of 15 gates
and 37 inputs for traditional design, and 30 gates and
102 inputs for evolutionary design. A comparison
between these two implementations have been done
in Section 4.

4. EXPERIMENTAL RESULTS

All the circuits designed in previous section have
been implemented in a real CPLD circuit. This
circuit is XCR3064XL, a Xilinx CPLD with 64
macrocells and 1500 usable gates, providing low-
power and very high speed, and beeing in-system
programmable through JTAG IEEE 1149.1 Interface.

Fig. 8. The evolution of the output functions of the
computer interface.

Unfortunately, this circuit has only 1000 erase/
programming cycles guaranteed, so it can not be used
with intrinsic EHW.

The Xilinx XCR3064XL CPLD is mounted on a
development board, called Digilab XCRP, delivered
by Digilent, Inc. This low cost platform can be used
to implement a wide variety of digital circuits. XCRP
board uses a 44-pin PLCC package, with four used
for Vcc connections, three for GND, and five for
JTAG programming. All remaining 32 I/O pins are
routed to the expansion connector, and 31 are also
routed to on-board devices (4 for pushbuttons, 8 for
slide switches, 8 for LEDs, 10 for the seven-segment
display and one for the system clock). The block
diagram from the figure 9 shows all connections
between the CPLD and the devices on the board.

The XCRP board uses a DB-25 parallel port
connector to route JTAG programming signals from
a host computer to the CPLD. The programming
circuit simply connects the parallel port pins driven
by the Xilinx CAD tools directly to the CPLD
programming pins. The software we have used is
Xilinx Integrated Software Environment (ISE) 6.1i, a
complete CAD environment for implementation of
complex digital circuits. We have generated the
source file of the new project (schematic diagram or
VHDL) and have obtained the fitter report and the
timing report of the circuit. The bit file may be
downloaded in the CPLD by using Xilinx’s iMPACT
programmer tool from the ISE 6.1i.

We have implemented and analysed all the circuits
discussed in Section 3. In the case of boolean
function from the subsection 3.1, we have obtained
the same results for all different equations done
there. The circuit has used a single macrocell from
the maximum number of 64 (that is 1/64), only two
product terms from the maximum number of 224
(that is 2/224), and only 3 function block inputs from
the total number of 160 (that is 3/160). The pad to
pad delay is 6 ns, and the total delay of the circuit is
not more than this value. We can assume that our
software finds an optimal way in connecting the
hardware resources of the circuit, even if the function
is not done in a minimal form.

Parallel port connector

5

Xilinx
XCR 3064
CoolRunner

CPLD

Push
buttons

Slide
switches

Clock

LEDs

7-seg
display

Expansion
Connector

4

8

8

10
32

Fig. 9. CPLD connections

The above conclusion is for pure combinational
circuits. In sequential circuits, the optimal state
assignment is crucial. The sequence detector from
the subsection 3.2, implemented with the equations
4,5,6 and 7, has used only 3/64 macrocells, 3/224
product terms, and 3/160 function block inputs. The
same circuit, implemented with the equations 8,9,10
and 11, has used 3/64 macrocells, 4/224 product
terms, and 4/160 function block inputs. The third
circuit, implemented by manual design with the
equations 12, 13, 14 and 15, has the worse share of
resources: 4/64 macrocells, 9/224 product terms, and
4/160 function block inputs. Even the combinational
time delay is different for these circuits (4.7ns, 5.2ns
and 7,2ns in that order). All these three circuits have
the same number of flip-flops (that is 3/64) and the
same number of pins used like inputs/outputs (that is
3/32). It’s true that the main differences in the
complexity of these three circuits are given by the
state assignment. In the best solution, the state
assignment has been evolved with a GA.

The computer interface from the subsection 3.3,
implemented by manual design with the equations 16
to 22, has used 7/64 macrocells, 11/224 product
terms, and 7/160 function block inputs. Evolutionary
design, with the same state assignment, provides
much more complicated equations. In this case, the
complete cost of the whole combinational circuit is
consisted of 30 gates and 102 inputs. Surprising is
the fact that the implementation of this complex
circuit in XCR3064XL CPLD has used only 7/64
macrocells, 10/224 product terms, and 7/160 function
block inputs. This is even a better result than in
preceding case, because the number of product terms
is less with 1. Both implementations have used the
same number of flip-flops (that is 3/64) and the same
number of pins used like inputs/outputs (that is 9/32).
We have preserved the state assignment of the FSM,
and the subcircuits are in fact as pure combinational
circuits. The interesting fact is that our GA have
supplied a better solution than the one given by the
minimization tool used for this purpose by the CAD
software.

5. CONCLUSIONS

In this paper we have compared two different
paradigms in digital design: the traditional digital
design and the evolutionary digital design. Our goal
was to optimize the digital circuit and to implement it
with minimum resources in a CPLD.

We have shown that pure combinational circuits are
implemented optimal, even if the boolean functions
are faraway of their minimal form, that is software
finds the optimal way in connecting the hardware
resources of the circuit. Sequential circuits are more
sensitive, because of the state assignment, but
evolutionary design assures a better fitting of circuit
resources in all cases that had been investigated.

Future research must be done in this area. Firstly it is
important to find a better representation of the circuit
in chromosomes, because complex functions need a
great number of architecture bits, which directly
influences the GA search space. EHW successfully
succeeds only when fitness reaches 100% and in
huge search spaces this condition may be not always
possible. This is the main reason that for the time
being the complexity of evolved circuits is so far
small. Unfortunately, our circuit can not be used with
intrinsic EHW, but other FPGA circuits may be used
in intrinsic EHW experiments (Thompson, 1996).

ACKNOWLEDGMENT

The author would like to thank the Xilinx, Inc. for
their academic donation, which consists in Xilinx
Integrated Software Environment (ISE) 6.1i software
and the Digilab XCRP circuit board provided by
Digilent, Inc.

REFERENCES

Ali, B., A.E.A. Almaini and T. Kalganova (2004).
Evolutionary Algorithms and Their Use in the
Design of Sequential Logic Circuits. Genetic
Programming and Evolvable Machines, 5, 11-29

Coello, C.C., A.D. Christiansen and A.H. Aguirre
(2000). Use of Evolutionary Techniques to
Automate the Design of Combinational Circuits.
Int. Journal of Smart Engineering System
Design, 4, 299-314.

Iba, H., M. Iwata and T. Higuchi (1996). Machine
Learning Approach to Gate-Level Evolvable
Hardware. Proc. of the First Int. Conf. on
Evolvable Systems ICES’96, Tsukuba, Japan,
October 1996, 327-343.

Popa, R. and M. Iliev (1999). Evolvable Synthesis of
Digital Circuits. Proc. of the 5-th Int. Workshop
on Bases of Electronics SBE’99, Cluj-Napoca,
Romania, 10-11 June 1999, 206-211.

Thompson, A. (1996). An Evolved Circuit, Intrinsic
in Silicon, Entwined with Physics. Proc. of the
First Int. Conf. on Evolvable Systems ICES 96,
Tsukuba, Japan, October 1996, 390-405.

Wakerly, J. (2000). Digital Design: Principles and
Practices, Third Edition. Prentice Hall, Inc.,
New-Jersey.

