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Abstract: Evolvable Hardware (EHW) is a hardware which modifies its own structure in 
order to adapt to the environment in which it is embedded. This reconfigurable hardware 
is implemented on a programmable circuit, whose architecture can be altered by 
downloading a binary bit string. These bits are adaptively acquired by evolutionary 
algorithms. In this paper we have used an evolutionary algorithm to design some 
combinational and sequential logic circuits. These designs have been implemented in a 
real Xilinx XCR3064 CPLD and have been compared with other designs created by 
manual methods or other heuristic techniques. A better fitting of circuit resources have 
been observed in almost all evolutionary designs. Copyright © 2004 IFAC 
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1. INTRODUCTION 
 

EHW is a hardware built on a software 
reconfigurable logic device, such as Programmable 
Logic Device (PLD) or Field Programmable Gate 
Array (FPGA). In these circuits the logic design is 
compiled into a binary bit string. By changing the 
bits, arbitrary hardware structures can be 
implemented instantly. The key idea is to regard such 
a bit string as a chromosome of a genetical 
algorithm. Through genetic learning, EHW finds the 
best bit string and reconfigures itself according to 
rewards received from the environment. In this way, 
the hardware structure is adaptively searched by 
genetic algorithm (GA). This basic idea of EHW is 
illustrated in the figure 1. 
 
The traditional design process is top-down and 
begins with a precise specification. EHW is 
applicable even when no hardware specification is 
known before. Its implementation is determined 
through a genetic learning in a bottom-up way. GA is 
meant to mimic Darwinian evolution. A population 
of candidates is maintained, and goes through a 
series of generations. For each new generation, some 

of the existing candidates survive, while others are 
created by a type of reproduction and mutation from 
a set of parents. EHW combine knowledge of both 
GA and logic design to evolve circuits. 
 
Research in EHW can be divided into intrinsic 
evolution, which refers to an evolutionary process in 
which each circuit is built in electronic hardware and 
tested, and extrinsic evolution, that uses a model of 
the hardware and evaluates it by simulation in 
software. 
 
In this paper we have shown that evolutionary design 
is favourably against the traditional design in 
Complex PLD (CPLD) implementation. We have 
used only extrinsic evolution, but the circuits 
generated in this way have been tested in a real 
Xilinx XCR3064 CoolRunner CPLD by using the 
Xilinx ISE 6.1i software. The remaining sections of 
the paper are organised as follows: Section 2 
describes in more detail the genetic learning 
component of the EHW. Section 3 shows some 
examples of combinational and sequential circuits 
and their implementation by using  of traditional and 
then evolutionary design techniques. All these            
. 



     

 
 
Fig. 1. The basic idea of EHW. A binary bit string, 

called “architecture bits”, is modified by 
evolution. Each new string of “architecture bits” 
implements a new electronic circuit in PLD.  

 
circuits have been implemented in a 64 macrocell 
Xilinx CPLD. These experimental results are given 
in Section 4. Finally, Section 5 provides the 
conclusions and future work.  

 
 

2. GENETIC LEARNING IN EHW 
 

The genotype of an evolved structure on PLD basis 
is given by the bits for fuse array and bits for logic 
cells. However, this genotype representation has 
inherent limitations, since the fuse array bits are fully 
included in the genotype, even in the case that only a 
few bits are effective. Iba, et al. (1996), has 
introduced the variable length chromosome, a short 
chromosome that can increase the maximum size of 
the evolved circuit. Α tiny different method for 
chromosome representation, by using only the 
essential number of minterms, was proposed by Popa 
and Iliev (1999). In this way, this method can reduce 
the chromosome length and establish an efficient 
adaptive search. 
 
All the developed algorithms in this paper are based 
on the fundamental structure of a GA. The initial 
population of chromosomes (bit strings) is generated 
randomly. All these potential solutions are evaluated 
using a fitness function. In our case, for a single 
boolean function, fitness is the ratio between the 
number of the correct values of the function and the 
number of all possible values (which is n2 , if the 
boolean function has n input variables). A well-
designed circuit will be obtained only when the value 
of fitness is 100%. An approximately value of the 
fitness is unacceptable here.    
 
The next step is selection and reproduction. For each 
individual, a number of copies are made, 
proportional to its fitness, while keeping the 
population size constant. The least fit individuals are 
deleted. This is the survival of the fittest part of the 
GA.  
 
The next step is crossover, where individuals are 
chosen two at a time, as parents. They are converted 
into two new individuals, called offsprings, by 
exchanging parts of their structure. Thus, each 
offspring inherits a combination of features from 
both parents. We have obtained the best results with 
one point crossover, with a probability of 80%. This 
operator may be used more times on different 
selected pairs of chromosomes in a generation.  
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Fig. 2. A finite state machine may be divided into 
purely combinational blocks (subcircuits A and 
B) and register.   

 

The next step is mutation. A small change is made to 
each resultant offspring, with a small probability. 
After mutation is performed on an individual, it no 
longer has just the combination of features inherited 
from its two parents, but also incorporates the 
additional change caused by mutation. This ensures 
that the algorithm can explore new features that may 
not yet be in the population. It makes the entire 
search space reachable despite the finite population 
size. The whole process is repeated for several 
generations, and, if the best chromosome in 
population will have the fitness of 100%, then this bit 
string represents a good solution for our function. 
 
 

3. SOME EVOLUTIONARY DESIGNS 
 

The first successful evolved circuits have been the 
digital combinational logic circuits. The evolution of 
sequential logic circuits is considerably less mature. 
The complexity of circuit connections and encoding 
chromosomes to evolve the sequential logic circuit 
may be one of the reasons that not much work has 
been done in this area (Ali, et al., 2004).  
 

As we can see from the figure 2, the sequential 
circuits may be divided into purely combinational 
blocks and registers. Large sequential circuits are 
typically modelled by smaller interacting finite state 
machines (FSMs). A FSM is defined as a 
mathematical model of a system with discrete inputs, 
discrete outputs and a finite number of internal 
configurations or states. The states of a system 
completely summarise the information concerning 
past inputs to the system that is needed to determine 
its behaviour on subsequent inputs.  
 
In the first subsection we have shown the design of a 
boolean function of 3 variables. In the next two, we 
have used different ways to design the combinational 
blocks of the two distinct FSMs.  
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Fig. 3. A sequence detector described as state 
transition graph and GA state assignment.  

 

 

3.1 The Implementation of a Boolean Function  
 

We have considered a boolean function represented 
in a minimal disjunctive form by using a Karnaugh 
map: 
 

3231321 xxxxxxxf ⋅+⋅+⋅⋅=         (1) 
 
This representation has a cost of 7 gates and 13 
inputs, including inverters. By applying some 
switching-algebra theorems our function may be 
written in the next form: 
 

213 xxxf ⋅⊕=                        (2) 
 
Now, the cost of implementation is only of 3 gates 
and 5 inputs. Unfortunately, there is no algorithm to 
find this convenient form of the function, only the 
heuristics and experience of the human designer.  
 
We have tried  to find another representation of this 
function by evolutionary design. We have used the 
idea given in Coello, et al. (2000). Each 
combinational circuit is represented as a rectangular 
array of logic gates. Each of these gates has two 
inputs and one output, and the logic operator may be 
selected from a list. At the beginning of the search, 
all the gates from the matrix are disposable to 
implement a functional circuit. Once a functional 
solution appears, then the fitness function is modified 
such that any valid designs produced are rewarded 
for each gate which is replaced by a simple wire. The 
algorithm tries to find the circuit with the maximum 
number of gates replaced by wires that performs the 
function required. 
 
The chromosome defines the connection in the 
network between the primary inputs and primary 
outputs. We have used a network of 4 gates, a 
population of 32 chromosomes, 10 of them beeing 
changed each generation, a single point 100% 
crossover and 5% rate mutation.  
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Fig. 4. A computer interface described as state 
transition graph and manual state assignment.  

 
A feasible solution has been obtained in less than 100 
generations. This function may be written as:  
 

3121 xxxxf ⊕+⊕=                   (3) 
 
We can see that, in this case, the cost is of 3 inverting 
gates and 6 inputs, and this solution has the minimum 
delay time between any input and the output of the 
circuit, in a gate level implementation.  
 
Finally, the most extended representation of this 
function is the disjunctive canonical form, with a 
total cost of 9 gates and 23 inputs. We have 
implemented all these four different equations of the 
function in a real programmable circuit and the 
results are compared in Section 4. 
 

 

3.2 The Implementation of a Sequence Detector 
 

The FSM represented in the figure 3 is a sequence 
detector with one-input, one-output and 6-internal 
states. When the input sequence 011 occurs, the 
output becomes 1 and remains on this logic value 
until sequence 011 occur again. In this case, the 
output returns to 0, and maintain this value, until a 
new sequence 011 appears.  This circuit has been 
described in Ali, et al. (2004). 
 
Firstly a GA has been used to find optimal state 
assignment. An example of state assignment 
generated in this way is shown in the figure 3. The 
chromosome represents the FSM as a list of states. 
The goal of the GA is to extract the optimum state 
assignment, which requires the least number of logic 
gates. A more detailed description of this problem is 
presented in Ali, et al. (2004).  
 
Then, the extrinsic EHW has been used to find the 
functional design of combinational parts of the 
sequence detector. The two subcircuits, A and B, are 
evolved by using the method presented in the 
subsection 3.1 and in Coello, et al. (2000).  
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Fig. 5. Evolved optimal circuit solution of the 
sequence detector (first solution). 

 
The equations of the evolved optimal combinational 
circuit, as they have obtained by Ali, et al. (2004), 
are the following (see figure 5): 
 

022022 QQxQxQQD ⋅⋅+⋅+⋅=          (4) 

xD =1                                  (5) 

10 QxD ⋅=                               (6) 

2Qy =                                  (7) 
 

We have used different notations for the present and 
the future states of the flip-flops, and for output 
function, according to Wakerly (2000).   
 
A second evolved solution has been obtained with 
another state assignment: S0 – 000, S1 – 001, S2 – 
011, S3 – 111, S4 – 110 and S5 – 100. The schematic 
diagram of the circuit is given in the figure 6, and the 
equations of the combinational circuit are: 
 

122 QxQxD ⋅+⋅=                       (8) 

021 QxQxD ⋅+⋅=                       (9) 

010 QxQxD ⋅+⋅=                     (10) 

0Qy =                                  (11) 
 

A bad state assignment may conduct to much more 
complex boolean functions for the subcircuits A and 
B: if S0 – 000, S1 – 001, S2 – 010, S3 – 011, S4 – 
100 and S5 – 101, then the equations are: 
 

010222 QQxQQQxD ⋅⋅+⋅+⋅=          (12) 

0211 QQxQxD ⋅⋅+⋅=                    (13) 

12020110 QQxQQxQQQxD ⋅⋅+⋅⋅+⋅+⋅= (14) 

012 QQQy ⋅+=                            (15) 
 

These latest equations have been obtained by manual 
design, by using Karnaugh maps. All these three 
solutions have been implemented in a CPLD and the 
results are discussed in Section 4. 
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Fig. 6. Evolved optimal circuit solution of the 
sequence detector (second solution). 

  

 

3.3 The Implementation of a Computer Interface 
 

The FSM represented in the figure 4 is a computer 
interface for serial communication between two 
computers. A transition from one state to another 
depends  from only one of the 4 inputs 4,1, =ixi . 
The circuit has 4 outputs, each of them beeing in 1 
logic only in a single state. The FSM has 6 states and 
has been presented in Popa and Iliev (1999). 
 
With the state assignment given in the figure 4, the 
traditional design of this circuit gives the following 
equations for the subcircuit A: 
 

120132 QQQQxD ⋅+⋅⋅=               (16) 

01240121 QQQxQQxD ⋅+⋅+⋅⋅=         (17) 

010120210 QQQQxQQxD ⋅+⋅⋅+⋅⋅=       (18) 
 

The subcircuit B, or the output functions, are given 
by the following equations: 
 

011 QQy ⋅=                           (19) 

0122 QQQy ⋅⋅=                       (20) 

123 QQy ⋅=                           (21) 

124 QQy ⋅=                           (22) 
 

For the evolutionary design of this circuit we have 
preferred a complete different way than in previous 
subsection. Each of these boolean functions has a 
maximum number of 5 inputs and a maximum 
number of 4 minterms. If we want to implement 
these functions in a PLD structure (an AND array 
and logic cells configurable as OR gate), then the 
number of fuse array links is 2 5 4 40⋅ ⋅ = , and we 
may to consider this number as the total length of the 
chromosome.  



     

 

 

Fig. 7. The evolution of the excitation functions of 
the computer interface.  

 
Our GA is a standard one, with the population size of 
30 chromosomes. One point crossover is executed 
with a probability of 80% and the mutation rate is 
2%. Six worse chromosomes are replaced each 
generation. The stop criterion is the number of 
generations. 
 
Our circuit has 3 excitations functions,  += ii QD , 
with i = 1, 2, 3, and 4 output functions, iy , with i = 
1, 2, 3, and 4 .  Figure 7 reflects the evolution of the 
circuit for the first 3 functions. However, this circuit 
is built from 3 independent circuits, each generating 
one output bit. Therefore, the evolution of a circuit 
with one output bit is repeated 3 times. The Y axis is 
the correct answer rate. If it reaches 100%, then the 
hardware evolution succeeds. All 3 circuits are 
successfully obtained in less than 500 generations.  
 
In the same way, figure 8 reflects the evolution of the 
circuit for the output functions. The evolution 
succeeds after a less number of generations because 
the total search space is in this case much lower than 
in previous case (all the output functions have only 3 
variables). 
 
Evolution may provide some non-minimal 
expressions for these boolean functions, but 
minimization is not necessary for PLD 
implementations. The length of the chromosomes is 
greater than the optimal one, and the evolved 
equations are much more complicated than the given 
equations from (16) to (22). The complete cost of the 
whole combinational circuit is consisted of  15 gates 
and 37 inputs for traditional design, and 30 gates and 
102 inputs for evolutionary design. A comparison 
between these two implementations have been done 
in Section 4.  

 
 

4. EXPERIMENTAL RESULTS 
 

All the circuits designed in previous section have 
been implemented in a real CPLD circuit. This 
circuit is XCR3064XL, a Xilinx CPLD with 64 
macrocells and 1500 usable gates, providing low-
power and very high speed, and beeing in-system 
programmable through JTAG IEEE 1149.1 Interface. 

 
 

Fig. 8. The evolution of the output functions of the 
computer interface.  

 
Unfortunately, this circuit has only 1000 erase/ 
programming cycles guaranteed, so it can not be used 
with intrinsic EHW.  
 
The Xilinx XCR3064XL CPLD is mounted on a 
development board, called Digilab XCRP, delivered 
by Digilent, Inc. This low cost platform can be used 
to implement a wide variety of digital circuits. XCRP 
board uses a 44-pin PLCC package, with four used 
for Vcc connections, three for GND, and five for 
JTAG programming. All remaining 32 I/O pins are 
routed to the expansion connector, and 31 are also 
routed to on-board devices (4 for pushbuttons, 8 for 
slide switches, 8 for LEDs, 10 for the seven-segment 
display and one for the system clock). The block 
diagram from the figure 9 shows all connections 
between the CPLD and the devices on the board.  
 
The XCRP board uses a DB-25 parallel port 
connector to route JTAG programming signals from 
a host computer to the CPLD. The programming 
circuit simply connects the parallel port pins driven 
by the Xilinx CAD tools directly to the CPLD 
programming pins. The software we have used is 
Xilinx Integrated Software Environment (ISE) 6.1i, a 
complete CAD environment for implementation of 
complex digital circuits. We have generated the 
source file of the new project (schematic diagram or 
VHDL) and have obtained the fitter report and the 
timing report of the circuit. The bit file may be 
downloaded in the CPLD by using Xilinx’s iMPACT 
programmer tool from the ISE 6.1i.  
 
We have implemented and analysed all the circuits 
discussed in Section 3. In the case of boolean 
function from the subsection 3.1, we have obtained 
the same results for all different equations done 
there. The circuit has used a single macrocell from 
the maximum number of 64 (that is 1/64), only two 
product terms from the maximum number of 224 
(that is 2/224), and only 3 function block inputs from 
the total number of 160 (that is 3/160). The pad to 
pad delay is 6 ns, and the total delay of the circuit is 
not more than this value. We can assume that our 
software finds an optimal way in connecting the 
hardware resources of the circuit, even if the function 
is not done in a minimal form. 
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Fig. 9. CPLD connections  
 
The above conclusion is for pure combinational 
circuits. In sequential circuits, the optimal  state 
assignment is crucial. The sequence detector from 
the subsection 3.2, implemented with the equations 
4,5,6 and 7, has used only 3/64 macrocells, 3/224 
product terms, and 3/160 function block inputs. The 
same circuit, implemented with the equations 8,9,10 
and 11, has used 3/64 macrocells, 4/224 product 
terms, and 4/160 function block inputs. The third 
circuit, implemented by manual design with the 
equations 12, 13, 14 and 15, has the worse share of 
resources: 4/64 macrocells, 9/224 product terms, and 
4/160 function block inputs. Even the combinational 
time delay is different for these circuits (4.7ns, 5.2ns 
and  7,2ns in that order). All these three circuits have 
the same number of flip-flops (that is 3/64) and the 
same number of pins used like inputs/outputs (that is 
3/32). It’s true that the main differences in the 
complexity of these three circuits are given by the 
state assignment. In the best solution, the state 
assignment has been evolved with a GA.  
 
The computer interface from the subsection 3.3, 
implemented by manual design with the equations 16 
to 22, has used 7/64 macrocells, 11/224 product 
terms, and 7/160 function block inputs. Evolutionary 
design, with the same state assignment, provides 
much more complicated equations. In this case, the 
complete cost of the whole combinational circuit is 
consisted of  30 gates and 102 inputs. Surprising is 
the fact that the implementation of this complex 
circuit in XCR3064XL CPLD has used only 7/64 
macrocells, 10/224 product terms, and 7/160 function 
block inputs. This is even a better result than in 
preceding case, because the number of product terms 
is less with 1. Both implementations have used the 
same number of flip-flops (that is 3/64) and the same 
number of pins used like inputs/outputs (that is 9/32). 
We have preserved the state assignment of the FSM, 
and the subcircuits are in fact as pure combinational 
circuits. The interesting fact is that our GA have 
supplied a better solution than the one given by the 
minimization tool used for this purpose by the CAD 
software.  

5. CONCLUSIONS 
 

In this paper we have compared two different 
paradigms in digital design: the traditional digital 
design and the evolutionary digital design. Our goal 
was to optimize the digital circuit and to implement it 
with minimum resources in a CPLD.  
 
We have shown that pure combinational circuits are 
implemented optimal, even if the boolean functions 
are faraway of their minimal form, that is software 
finds the optimal way in connecting the hardware 
resources of the circuit. Sequential circuits are more 
sensitive, because of the state assignment, but 
evolutionary  design assures a better fitting of circuit 
resources in all cases that had been investigated.  
 
Future research must be done in this area. Firstly it is 
important to find a better representation of the circuit 
in chromosomes, because complex functions need a 
great number of architecture bits, which directly 
influences the GA search space. EHW successfully 
succeeds only when fitness reaches 100% and in 
huge search spaces this condition may be not always 
possible. This is the main reason that for the time 
being the complexity of evolved circuits is so far 
small. Unfortunately, our circuit can not be used with 
intrinsic EHW, but other FPGA circuits may be used 
in intrinsic EHW experiments (Thompson, 1996).  
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