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Abstract—Evolvable Hardware is a hardware which 

modifies its own structure in order to adapt to the 
environment in which it is embedded. This reconfigurable 
hardware is implemented on a programmable circuit, whose 
architecture can be altered by downloading a binary bit 
string. These bits are adaptively acquired by evolutionary 
algorithms. In this paper we have used an evolutionary 
algorithm to design some combinational and sequential logic 
circuits. These designs have been implemented in two real 
Xilinx PLDs (a CPLD and a FPGA) and have been 
compared with other conventional designs of the same 
circuits. A better allocation of resources in the targeted 
devices has been observed in almost all evolutionary designs. 

Index Terms—Boolean functions, genetic algorithms, 
finite-state machine, programmable integrated circuits  
 

I. INTRODUCTION 
 

volvable Hardware (EHW) is a hardware built on a 
software reconfigurable logic device, generically 

called Programmable Logic Device (PLD). It may be a 
fewer complex integrated circuit, called  PLD or CPLD, 
or a Field-Programmable Gate Array (FPGA). In these 
circuits the logic design is compiled into a binary bit 
string. By changing the bits, arbitrary hardware structures 
can be implemented instantly. The key idea is to regard 
such a bit string as a chromosome of a Genetic Algorithm 
(GA). Through genetic learning, EHW finds the best bit 
string and reconfigures itself according to rewards 
received from the environment. In this way, the hardware 
structure is adaptively searched by GA. This basic idea of 
EHW, described in [4], is illustrated in Fig. 1. 

The conventional design process is top-down and 
begins with a precise specification. EHW is applicable 
even when no hardware specification is known before. Its 
implementation is determined through a genetic learning 
in a bottom-up way. GA is meant to mimic Darwinian 
evolution. A population of candidates is maintained, and 
goes through a series of generations. For each new 
generation, some of the existing candidates survive, while 
others are created by a type of reproduction and mutation 
from a set of parents. EHW combine knowledge of both 
GA and logic design to evolve circuits.  

Research in EHW can be divided into intrinsic 
evolution, which refers to an evolutionary process in 
which each circuit is built in electronic hardware and     

tested [8], and extrinsic evolution, that uses a model of 
the hardware and evaluates it by simulation in software. 

    

The genotype of an evolved structure on PLD basis is 
given by the bits for fuse array and bits for logic cells. 
However, this genotype representation has inherent 
limitations, since the fuse array bits are fully included in 
the genotype, even in the case that only a few bits are 
effective. In [4], a variable length chromosome has been 
introduced, with the aim of increasing the maximum size 
of the evolved circuit, by using an undersized length of 
the chromosome. In this way, the chromosome total 
length is reduced and an efficient adaptive search is 
established. 

In this paper we have shown that evolutionary design 
is favorably against the conventional design in 
programmable devices. We have used only extrinsic 
evolution, but the circuits generated in this way have been 
tested in a real integrated circuits, like Xilinx XCR3064 
CPLD, and Xilinx Spartan-3 XC3S200 FPGA using the 
Xilinx ISE 6.1i software. The remaining sections of the 
paper are organised as follows: Section II describes in 
more detail the genetic learning component of the EHW 
and illustrates various evolutionary designs of some 
digital circuits. All these implementations have been 
analyzed and the experimental results are given in Section 
III. As a final point, Section IV provides the conclusions 
and future work.  

 
II. SOME EVOLUTIONARY DESIGNS 

 
This section consists of four subsections: the first one 

talk about the genetic learning component of the EHW, 
the second shows some implementations of a boolean 
function, and the last two subsections presents two 
various Finite State Machines (FSMs). 

As we know, a FSM may be divided into two purely 
combinational blocks and register. A FSM is defined as a 
mathematical model of a system with discrete inputs, 
discrete outputs and a finite number  of internal 
configurations or states. The states of a system 
completely summarise the information concerning past 
inputs to the system that is needed to determine its 
behaviour on subsequent inputs.  

A.  Genetic Learning in EHW 

All the evolutionary algorithms used in this paper are 
based on the fundamental structure of a GA. The initial 
population of chromosomes (bit strings) is generated 
randomly. All these potential solutions are evaluated 
using a fitness function. In our case, for a single boolean 
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Fig. 1.  The basic idea of EHW. A binary bit string, called “architecture 
bits”, is modified by evolution. Each new string of “architecture bits” 
implements a new electronic circuit in PLD.  
 
correct values of the function and the number of all 
possible values (which is , if the boolean function has 
n input variables). A well-designed circuit will be 
obtained only when the value of fitness is 100%. A 
roughly value of the fitness is unacceptable here.    

n2

The next step is selection and reproduction. For each 
individual, a number of copies are made, proportional to 
its fitness, while keeping the population size constant. 
The least fit individuals are deleted. This is the survival of 
the fittest part of the GA.  

The next step is crossover, where individuals are 
chosen two at a time, as parents. They are converted into 
two new individuals, called offsprings, by exchanging 
parts of their structure. Thus, each offspring inherits a 
combination of features from both parents. We have 
obtained the best results with one point crossover, with a 
probability of 80%. This operator may be used more 
times on different selected pairs of chromosomes in a 
generation.  
     The next step is mutation. A small change is made to 
each resultant offspring, with a small probability. After 
mutation is performed on an individual, it no longer has 
just the combination of features inherited from its two 
parents, but also  incorporates the additional change 
caused by mutation. This ensures that the algorithm can 
explore new features that may not yet be in the 
population. It makes the entire search space reachable 
despite the finite population size. The whole process is 
repeated for several generations, and, if the best 
chromosome in population will have the fitness of 100%, 
then this bit string represents a good solution for our 
function.  

The first successful evolved circuits have been the 
digital combinational logic circuits. The evolution of 
sequential logic circuits is considerably less mature and 
not much work has been done in this area ([1]).   

B.  A Boolean Function 
 We have considered a boolean function represented in 
a minimal disjunctive form using a Karnaugh map:  
   

3231321 xxxxxxxf ⋅+⋅+⋅⋅=             (1) 

This representation has a cost of 7 gates and 13 inputs, 
including inverters. By applying some switching-algebra 
theorems, our function may be written in the next form: 
 

213 xxxf ⋅⊕=                         (2) 
 

Now, the cost of implementation is only of 3 gates and 
5 inputs. Unfortunately, there is no algorithm to find this 
convenient form of the function, only the heuristics and 
experience of the human designer.   

Then we have tried to find another representation of 
this function by evolutionary design. We have used the 
idea given in [3]. Each combinational circuit is 
represented as a rectangular array of logic gates. Each of 
these gates has two inputs and one output, and the logic 
operator may be selected from a list. At the beginning of 
the search, all the gates from the matrix are disposable to 
implement a functional circuit. Once a functional solution 
appears, then the fitness function is modified such that 
any valid designs produced are rewarded for each gate 
which is replaced by a simple wire. The algorithm tries to 
find the circuit with the maximum number of gates 
replaced by wires that performs the function required. 

The chromosome defines the connection in the network 
between the primary inputs and primary outputs. We have 
used a network of 4 gates, a population of 32 
chromosomes, 10 of them beeing changed each 
generation, a single point 100% crossover and 5% rate 
mutation.   

A feasible solution has been obtained in less than 100 
generations. This function may be written as:  
 

3121 xxxxf ⊕+⊕=                    (3) 
 

We can see that, in this case, the cost is of 3 inverting 
gates and 6 inputs, and this solution has the minimum 
delay time between any input and the output of the 
circuit, in a gate level implementation.  
     Finally, the most extended representation of this 
function is the disjunctive canonical form, with a total 
cost of 8 gates and 19 inputs. We have implemented all 
these four different equations of the function in both 
Xilinx PLD circuits and the results are compared in 
Section III. 

C.  A Sequence Detector 
The FSM represented in Fig. 2 is a sequence detector 

with one-input, one-output and 6-internal states. When 
the input sequence 011 occurs, the output becomes 1 and 
remains on this logic value until sequence 011 occur 
again. In this case, the output returns to 0, and maintain 
this value, until a new sequence 011 appears ([1]). 
     Firstly a GA has been used to find optimal state 
assignment. An example of state assignment generated in 
this way is shown in Fig. 2. The chromosome represents 
the FSM as a list of states. The goal of the GA is to 
extract the optimum state assignment, which requires the 
least number of logic gates ([1]).  
     Then, the extrinsic EHW has been used to find the 
functional design of combinational parts of the sequence    
. 
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Fig. 2.  The state transition graph of a sequence detector and an optimum 
state assignment delivered by a genetic algorithm. 
 
detector. The equations of the evolved optimal 
combinational circuit, represented in Fig. 3, are the 
following ([1], [9]): 
 

022022 QQxQxQQD ⋅⋅+⋅+⋅=              (4) 
xD =1                                      (5) 

10 QxD ⋅=                                  (6) 

2Qy =                                     (7) 
 
     A second evolved solution has been obtained with 
another state assignment: S0 – 000, S1 – 001, S2 – 011, 
S3 – 111, S4 – 110 and S5 – 100. The equations of the 
combinational circuit are: 
 

122 QxQxD ⋅+⋅=                         (8) 

021 QxQxD ⋅+⋅=                             (9) 

010 QxQxD ⋅+⋅=                          (10) 

0Qy = ,                                 (11) 
 

A not as good as state assignment may conduct to 
much more complex equations. For example, if the codes 
of the states are: S0 – 000, S1 – 001, S2 – 010, S3 – 011, 
S4 – 100 and S5 – 101, then: 
 

010222 QQxQQQxD ⋅⋅+⋅+⋅=           (12) 

0211 QQxQxD ⋅⋅+⋅=                       (13) 

12020110 QQxQQxQQQxD ⋅⋅+⋅⋅+⋅+⋅=    (14) 

012 QQQy ⋅+=                             (15) 
 

Equations (12-15) have been obtained by using 
Karnaugh maps, in a manual design technique. All these 
three solutions of the FSM have been implemented in 
both above mentioned Xilinx PLD circuits and the results 
are discussed in Section III. 
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Fig. 3.  Evolved optimal circuit solution of the sequence detector by 
using the equations (4-7). 
 

D.  A Computer Interface 
The FSM represented in Fig. 4 is a computer interface 

for serial communication between two computers. A 
transition from one state to another depends  from only 
one of the 4 inputs 4,1, =ixi . The circuit has 4 outputs, 
each of them beeing in 1 logic only in a single state. The 
FSM has 6 states and has been presented in [5]. 
     With the state assignment given in Fig. 4, the 
conventional design of this circuit gives the following 
equations for excitation functions: 
 

120132 QQQQxD ⋅+⋅⋅=                 (16) 

01240121 QQQxQQxD ⋅+⋅+⋅⋅=          (17) 

010120210 QQQQxQQxD ⋅+⋅⋅+⋅⋅=         (18) 
 

For the output functions, the equations are: 
 

011 QQy ⋅=                           (19) 

0122 QQQy ⋅⋅=                         (20) 

123 QQy ⋅=                             (21) 

124 QQy ⋅=                              (22) 
 

     Evolutionary design of this circuit was done in a  
different way than in previous subsection. Each of these 
boolean functions has a maximum number of 5 inputs and 
a maximum number of 4 minterms. If we want to 
implement these functions in a PLD structure (an AND 
array and logic cells configurable as OR gate), then the 
number of fuse array links is 2 5 , and we may to 
consider this number as the total length of the 
chromosome.  

4 40⋅ ⋅ =

We have used a standard GA, with 30 chromosomes in 
population, one point crossover, and 2% mutation rate. 
Six chromosomes are replaced each generation and the 
stop criterion is the number of generations. 
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Fig. 4.  The state transition graph of a computer interface and manual 
state assignment. 
 

Our 100% fitness criterion was a feasible solution in a 
CPLD structure, and not the minimization of the number 
of gates. The complete cost of the whole combinational 
circuit is consisted of  15 gates and 37 inputs for 
conventional design, and 30 gates and 102 inputs for 
alternative evolutionary design.. The schematic diagram 
of this combinational circuit is given in Fig. 5 ([5], [6]). 

 
III. EXPERIMENTAL RESULTS 

 
All the circuits designed in previous section have been 

implemented in real PLDs. We have used two integrated 
circuits, a CPLD and a FPGA, both from Xilinx, Inc.  

A.  Experiments with CPLD 
The first circuit used in our experiments is 

XCR3064XL, a Xilinx CPLD with 64 macrocells and 
1500 usable gates, providing low-power and very high 
speed, and beeing in-system programmable through 
JTAG IEEE 1149.1 Interface.  

Unfortunately, this circuit has only 1000 erase/ 
programming cycles guaranteed, so it can not be used 
with intrinsic EHW.  

The Xilinx XCR3064XL CPLD is mounted on a 
development board, called Digilab XCRP, delivered by 
Digilent, Inc. This low cost platform can be used to 
implement a wide variety of digital circuits. XCRP board 
uses a 44-pin PLCC package, with four used for Vcc 
connections, three for GND, and five for JTAG 
programming. All remaining 32 I/O pins are routed to the 
expansion connector, and 31 are also routed to on-board 
devices (4 for pushbuttons, 8 for slide switches, 8 for 
LEDs, 10 for the seven-segment display and one for the 
system clock).  
 The XCRP board uses a DB-25 parallel port connector 
to route JTAG programming signals from a host 
computer to the CPLD. The programming circuit simply 
connects the parallel port pins driven by the Xilinx CAD 
tools directly to the CPLD programming pins. We have 
used      

 
 

Fig. 5.  An evolved nonoptimal solution of the  computer interface. 
 
Xilinx ISE 6.1i, a complete CAD environment for 
implementation of complex digital circuits. We have 
generated the source file of the new project (schematic 
diagram or VHDL) and have obtained the fitter report and 
the timing report of the circuit. The bit file may be 
downloaded in the CPLD using Xilinx’s iMPACT 
programmer tool from the ISE 6.1i.  

We have implemented and analysed all the circuits 
discussed in Section II. In the case of the boolean 
function, we have obtained the same results for all 
different equations done there. The circuit has used a 
single macrocell from the maximum number of 64 (that is 
1/64), only two product terms from the maximum number 
of 224 (that is 2/224), and only 3 function block inputs 
from the total number of 160 (that is 3/160). The pad to 
pad delay is 6 ns, and the total delay of the circuit is not 
more than this value. We can assume that our software 
finds an optimal way in connecting the hardware 
resources of the circuit, even if the function is not done in 
a minimal form. 
 Previous conclusion is for pure combinational circuits. 
In sequential circuits, the optimal  state assignment is 
crucial. The sequence detector, implemented with the 
equations (4-7), has used only 3/64 macrocells, 3/224 
product terms, and 3/160 function block inputs. The same 
circuit, implemented with the equations (8-11), has 3/64 
macrocells, 4/224 product terms, and 4/160 function 
block inputs. The third circuit, implemented by manual 
design (equations 12-15), has the worse share of 
resources: 4/64 macrocells, 9/224 product terms, and 
4/160 function block inputs. Even the combinational time 
delay is different for these circuits (4.7ns, 5.2ns and  
7,2ns in that order). All these results are shown in the 
Table I. It’s true that the main differences in the 
complexity of these three circuits are given by the state 
assignment. In the best solution, the state assignment has 
been evolved with a GA.  

The computer interface, implemented by manual 
design with the equations (16-22), has used 7/64 
macrocells, 11/224 product terms, and 7/160 function 
block inputs.          . 
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TABLE I 
IMPLEMENTATION OF A SEQUENCE DETECTOR IN CPLD 

Sequence Detector Results after fitting 
 in CPLD eq. 4-7 eq. 8-11 eq.12-15 

time delay (ns) 4,7 5,2 7,2 
number  of  macrocells 3 3 4 
number of product terms 3 4 9 
number of block inputs 3 4 4 
number of flip-flops 3 3 3 
number of I/O pins 3 3 3 

 
TABLE II 

IMPLEMENTATION OF A COMPUTER INTERFACE IN CPLD 
Computer Interface Results after fitting 

in CPLD eq.16-22     GA 
number  of  macrocells        7        7 
number of product terms       11       10 
number of block inputs        7        7 
number of flip-flops        3        3 
number of I/O pins        9        9 

 
Evolutionary design, with the same state assignment, 
provides much more complicated equations. In this case, 
the complete cost of the whole combinational circuit is 
consisted of  30 gates and 102 inputs. Surprising is the 
fact that the implementation of this complex circuit in 
XCR3064XL CPLD has used only 7/64 macrocells, 
10/224 product terms, and 7/160 function block inputs. 
This is even a better result than in preceding case, 
because the number of product terms is less with 1. Both 
implementations have used the same number of flip-flops 
(that is 3/64) and the same number of pins used like 
inputs/outputs (that is 9/32). We have preserved the state 
assignment of the FSM, and the subcircuits are in fact as 
pure combinational circuits. A very interesting fact is that 
our GA have supplied a better solution than the one given 
by the minimization tool used for this purpose by the 
CAD software. All these results are given in the Table II. 

B.  Experiments with FPGA 
The second circuit used in our experiments is Spartan-3 

XC3S200, a Xilinx FPGA, which includes 4320 logic cell 
equivalents, twelve 18K-bit block RAMs, hardware 
multipliers, clock managers and up to 173 user-defined 
I/O signals.  
     This FPGA circuit is mounted on a Spartan-3 Starter 
Kit Development Board, with 2Mbit in-system 
programmable configuration Flash PROM, 1M-byte of 
Fast Asynchronous SRAM, 8-color VGA display port, 9-
pin RS-232 Serial Port, a PS/2 port, slide switches, 
buttons and LEDs. The board is in-system programmable 
through JTAG IEEE 1149.1 Interface, connected to PC 
parallel port.  

The design step is called “fitting” to “fit” the design to 
the target device. In CPLD, a device with a fixed 
architecture, the software needs to pick the gates and 
interconnect paths that match the circuit. The term 
“fitting” has historically been used to describe the 
implementation process for CPLD devices and “place and 
route” has been used for FPGAs. Implementation is 
followed by device configuration, where a bitstream is 
generated from the physical place and route, and 
downloaded into the target programmable device.  

TABLE III 
IMPLEMENTATION OF A BOOLEAN FUNCTION IN FPGA 

             Boolean Function Results after placing 
and routing in FPGA eq.1 eq.2 eq.3  CS 
max. path delay  (ns) 10,4 10,0 10,2 10,6 
number  of  4 in. LUTs 1 1 1 1 
number of bonded IOBs 4 4 4 4 
number of slices 1 1 1 1 
total equivalent gates 6 6 6 6 
additional JTAG gates 192 192 192 192 
peak memory usage (M) 65 65 65 65 
total time to PAR (sec) 2 2 2 2 

 
TABLE IV 

IMPLEMENTATION OF A SEQUENCE DETECTOR IN FPGA 

   Sequence Detector Results after placing 
and routing in FPGA eq.4-7 eq.8-11 eq.12-15 
Min. clock period  (ns) 4,630 3,618 5,844 
number  of  4 in. LUTs     2     3     4 
number of bonded IOBs     2     3     3 
number of slices     2     2     2 
number of slice flip-flops     3     3     3 
number of GCLKs     1     1     1 
total equivalent gates    39    45    51 
additional JTAG gates   144   144   144 
peak memory usage (M)    65    65     65 
total time to PAR (sec)     2     2     2 

 
For FPGAs the implementation process undertakes 4 

steps: “translate”, that interprets the design and runs a 
Design Rule Check (DRC), “map” that calculates and 
allocates resources in the targeted device, “place and 
route” that places the logic blocks in a logical position 
and utilises the routing resources, and “configure” that 
creates a programming bitstream. 

Results after “place and routing” step for our boolean 
function, are given in the Table III. We have used the first 
3 equations given in the Section II and the Canonical Sum 
(CS) of the minterms ([9]).  

 The program has used only 1 four-input Look-Up 
Table (LUT) from the total number of 3840. A LUT is in 
essence a piece of SRAM. The inputs to a LUT give the 
address where the desired value is stored. For a boolean 
function, a LUT can be made by storing the correct 
outputs in the slots to which the inputs point. Current 
logic blocks are based on LUTs in order to minimize 
delay and avoid wasting space. LUTs may have any 
number of inputs, leading to logic blocks of anywhere 
from medium to very coarse granularity. In [7] it was 
demonstrated that 4 inputs LUTs are indeed best for 
optimizing both speed and area of FPGA. This 4 inputs 
LUTs remain the industry standard for FPGAs, although 
in [2] has been discovered that sometimes grouping 
several connected 4 inputs LUTs into a single logic block 
minimizes delays and area.   

Another difficult problem is the optimizing the routing 
of wires between logic blocks. The greatest area of an 
FPGA is used for routing, and it has the potential to cause 
a great deal of delay. The CS representation of the 
function has the maximum combinational path delay 
(about 10,6 ns), the Karnaugh Map has a delay of 10,4 ns, 
and the evolved function has a delay of 10,2 ns. The 
minimum delay is obtained for equation (2), but we must 
remember that this representation has been generated in     
. 
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TABLE V 
IMPLEMENTATION OF A COMPUTER INTERFACE IN FPGA 

 Computer Interface Results after placing 
and routing in FPGA eq.16-22     GA 
min. clock period(ns)    5,078    6,470 
number  of  4 in. LUTs        9       11 
number of bonded IOBs        9        9 
number of slices        3        3 
number of slice flip-flops        3        3 
number of GCLKs        1        1 
total equivalent gates       81       93 
additional JTAG gates     432     432 
peak memory usage (M)       65       65 
total time to PAR (sec)        2        2 

 
an heuristic way, there is no algorithm for this solution. 
The best known algorithm remains the evolutionary one, 
presented in Section II. 

In sequential circuits, the optimal  state assignment is 
crucial. The best implementation of the sequence detector 
is given by the equations (4-7), but the minimum clock 
period is greater than in second implementation (a longer 
combinational path delay). In our circuit, the total number 
of LUTs is 3840, the total number of slice flip-flops is 
also 3840, the total number of slices is 1920, the total 
number of bonded IOBs is 173 and the total number of 
GCLKs is 8. Comparable results have been get with this 
circuit in CPLD implementation. It’s true that the main 
differences in the complexity of these three circuits are 
given by the state assignment. In the best solution, the 
state assignment has been evolved with a GA ([1]).  

If we are looking now in the table 5, we can see, for 
the first time, that an evolutionary algorithm (GA) is 
worse than a conventional one. We must remember again 
that in this case, our fitness criterion was a feasible 
solution in a CPLD structure, and not the minimization of 
resources in FPGA. As we can see, this evolutionary 
solution is bad for a FPGA implementation, but was very 
good for a CPLD one.  

  
IV.  CONCLUSION 

 
In this paper we have compared two different 

paradigms in digital design: the conventional design and 
the evolutionary design. Our goal was to optimize the 
digital circuit and to implement it with minimum 
resources in PLDs.   
     We have shown that pure combinational circuits are 
implemented almost optimal, even if the boolean 
functions are faraway of their minimal form, that is 
software finds the optimal way in connecting the 
hardware resources of the circuit. Even in this case, an 
evolutionary algorithm may offer a less maximum 
combinational path delay and may be considered.  
     Sequential circuits are more sensitive, because of the 
state assignment, but evolutionary  design assures a better 
fitting of circuit resources in all cases that has been 
investigated. The goal of the fitness must be the minimum 

resources in FPGA, and the state assignment must be 
evolved with a GA. 
     Future research must be done in this area. Firstly it is 
important to find a better representation of the circuit in 
chromosomes, because complex functions need a great 
number of architecture bits, which directly influences the 
GA search space ([4], [8]).  
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