
First International Symposium on Electrical and Electronics Engineering – ISEEE-2006, Galati, Romania

Evolvable Hardware in Xilinx PLDs

Rustem Popa, Member, IEEE, Viorel Nicolau, Member, IEEE, and Silviu Epure

Abstract—Evolvable Hardware is a hardware which

modifies its own structure in order to adapt to the
environment in which it is embedded. This reconfigurable
hardware is implemented on a programmable circuit, whose
architecture can be altered by downloading a binary bit
string. These bits are adaptively acquired by evolutionary
algorithms. In this paper we have used an evolutionary
algorithm to design some combinational and sequential logic
circuits. These designs have been implemented in two real
Xilinx PLDs (a CPLD and a FPGA) and have been
compared with other conventional designs of the same
circuits. A better allocation of resources in the targeted
devices has been observed in almost all evolutionary designs.

Index Terms—Boolean functions, genetic algorithms,
finite-state machine, programmable integrated circuits

I. INTRODUCTION

volvable Hardware (EHW) is a hardware built on a
software reconfigurable logic device, generically

called Programmable Logic Device (PLD). It may be a
fewer complex integrated circuit, called PLD or CPLD,
or a Field-Programmable Gate Array (FPGA). In these
circuits the logic design is compiled into a binary bit
string. By changing the bits, arbitrary hardware structures
can be implemented instantly. The key idea is to regard
such a bit string as a chromosome of a Genetic Algorithm
(GA). Through genetic learning, EHW finds the best bit
string and reconfigures itself according to rewards
received from the environment. In this way, the hardware
structure is adaptively searched by GA. This basic idea of
EHW, described in [4], is illustrated in Fig. 1.

The conventional design process is top-down and
begins with a precise specification. EHW is applicable
even when no hardware specification is known before. Its
implementation is determined through a genetic learning
in a bottom-up way. GA is meant to mimic Darwinian
evolution. A population of candidates is maintained, and
goes through a series of generations. For each new
generation, some of the existing candidates survive, while
others are created by a type of reproduction and mutation
from a set of parents. EHW combine knowledge of both
GA and logic design to evolve circuits.

Research in EHW can be divided into intrinsic
evolution, which refers to an evolutionary process in
which each circuit is built in electronic hardware and

tested [8], and extrinsic evolution, that uses a model of
the hardware and evaluates it by simulation in software.

The genotype of an evolved structure on PLD basis is
given by the bits for fuse array and bits for logic cells.
However, this genotype representation has inherent
limitations, since the fuse array bits are fully included in
the genotype, even in the case that only a few bits are
effective. In [4], a variable length chromosome has been
introduced, with the aim of increasing the maximum size
of the evolved circuit, by using an undersized length of
the chromosome. In this way, the chromosome total
length is reduced and an efficient adaptive search is
established.

In this paper we have shown that evolutionary design
is favorably against the conventional design in
programmable devices. We have used only extrinsic
evolution, but the circuits generated in this way have been
tested in a real integrated circuits, like Xilinx XCR3064
CPLD, and Xilinx Spartan-3 XC3S200 FPGA using the
Xilinx ISE 6.1i software. The remaining sections of the
paper are organised as follows: Section II describes in
more detail the genetic learning component of the EHW
and illustrates various evolutionary designs of some
digital circuits. All these implementations have been
analyzed and the experimental results are given in Section
III. As a final point, Section IV provides the conclusions
and future work.

II. SOME EVOLUTIONARY DESIGNS

This section consists of four subsections: the first one

talk about the genetic learning component of the EHW,
the second shows some implementations of a boolean
function, and the last two subsections presents two
various Finite State Machines (FSMs).

As we know, a FSM may be divided into two purely
combinational blocks and register. A FSM is defined as a
mathematical model of a system with discrete inputs,
discrete outputs and a finite number of internal
configurations or states. The states of a system
completely summarise the information concerning past
inputs to the system that is needed to determine its
behaviour on subsequent inputs.

A. Genetic Learning in EHW

All the evolutionary algorithms used in this paper are
based on the fundamental structure of a GA. The initial
population of chromosomes (bit strings) is generated
randomly. All these potential solutions are evaluated
using a fitness function. In our case, for a single boolean

E

Manuscript received June 15, 2006. The authors are with the
Department of Electronics and Telecommunications, Faculty of
Electrical and Electronics Engineering, “Dunărea de Jos” University of
Galaţi, Romania (phone/fax: (004)-0236-470905; e-mail:
Rustem.Popa@ugal.ro; Viorel.Nicolau@ugal.ro; and
Silviu.Epure@ugal.ro).
function, fitness is the ratio between the number of the
.

First International Symposium on Electrical and Electronics Engineering – ISEEE-2006, Galati, Romania

Architecture Bits
10100110...011

Architecture Bits
01110110...110

Genetic
Algorithm

Evolution

Fig. 1. The basic idea of EHW. A binary bit string, called “architecture
bits”, is modified by evolution. Each new string of “architecture bits”
implements a new electronic circuit in PLD.

correct values of the function and the number of all
possible values (which is , if the boolean function has
n input variables). A well-designed circuit will be
obtained only when the value of fitness is 100%. A
roughly value of the fitness is unacceptable here.

n2

The next step is selection and reproduction. For each
individual, a number of copies are made, proportional to
its fitness, while keeping the population size constant.
The least fit individuals are deleted. This is the survival of
the fittest part of the GA.

The next step is crossover, where individuals are
chosen two at a time, as parents. They are converted into
two new individuals, called offsprings, by exchanging
parts of their structure. Thus, each offspring inherits a
combination of features from both parents. We have
obtained the best results with one point crossover, with a
probability of 80%. This operator may be used more
times on different selected pairs of chromosomes in a
generation.
 The next step is mutation. A small change is made to
each resultant offspring, with a small probability. After
mutation is performed on an individual, it no longer has
just the combination of features inherited from its two
parents, but also incorporates the additional change
caused by mutation. This ensures that the algorithm can
explore new features that may not yet be in the
population. It makes the entire search space reachable
despite the finite population size. The whole process is
repeated for several generations, and, if the best
chromosome in population will have the fitness of 100%,
then this bit string represents a good solution for our
function.

The first successful evolved circuits have been the
digital combinational logic circuits. The evolution of
sequential logic circuits is considerably less mature and
not much work has been done in this area ([1]).

B. A Boolean Function
 We have considered a boolean function represented in
a minimal disjunctive form using a Karnaugh map:

3231321 xxxxxxxf ⋅+⋅+⋅⋅= (1)

This representation has a cost of 7 gates and 13 inputs,
including inverters. By applying some switching-algebra
theorems, our function may be written in the next form:

213 xxxf ⋅⊕= (2)

Now, the cost of implementation is only of 3 gates and
5 inputs. Unfortunately, there is no algorithm to find this
convenient form of the function, only the heuristics and
experience of the human designer.

Then we have tried to find another representation of
this function by evolutionary design. We have used the
idea given in [3]. Each combinational circuit is
represented as a rectangular array of logic gates. Each of
these gates has two inputs and one output, and the logic
operator may be selected from a list. At the beginning of
the search, all the gates from the matrix are disposable to
implement a functional circuit. Once a functional solution
appears, then the fitness function is modified such that
any valid designs produced are rewarded for each gate
which is replaced by a simple wire. The algorithm tries to
find the circuit with the maximum number of gates
replaced by wires that performs the function required.

The chromosome defines the connection in the network
between the primary inputs and primary outputs. We have
used a network of 4 gates, a population of 32
chromosomes, 10 of them beeing changed each
generation, a single point 100% crossover and 5% rate
mutation.

A feasible solution has been obtained in less than 100
generations. This function may be written as:

3121 xxxxf ⊕+⊕= (3)

We can see that, in this case, the cost is of 3 inverting
gates and 6 inputs, and this solution has the minimum
delay time between any input and the output of the
circuit, in a gate level implementation.
 Finally, the most extended representation of this
function is the disjunctive canonical form, with a total
cost of 8 gates and 19 inputs. We have implemented all
these four different equations of the function in both
Xilinx PLD circuits and the results are compared in
Section III.

C. A Sequence Detector
The FSM represented in Fig. 2 is a sequence detector

with one-input, one-output and 6-internal states. When
the input sequence 011 occurs, the output becomes 1 and
remains on this logic value until sequence 011 occur
again. In this case, the output returns to 0, and maintain
this value, until a new sequence 011 appears ([1]).
 Firstly a GA has been used to find optimal state
assignment. An example of state assignment generated in
this way is shown in Fig. 2. The chromosome represents
the FSM as a list of states. The goal of the GA is to
extract the optimum state assignment, which requires the
least number of logic gates ([1]).
 Then, the extrinsic EHW has been used to find the
functional design of combinational parts of the sequence
.

First International Symposium on Electrical and Electronics Engineering – ISEEE-2006, Galati, Romania

1 0

1

S/Y
X

S0: 000
S1: 010
S2: 001
S3: 100
S4: 110
S5: 101

S0/0

S1/0

S2/0

S3/1

S4/1

S5/1

1

0

0

1 0

1

0

0

1

Fig. 2. The state transition graph of a sequence detector and an optimum
state assignment delivered by a genetic algorithm.

detector. The equations of the evolved optimal
combinational circuit, represented in Fig. 3, are the
following ([1], [9]):

022022 QQxQxQQD ⋅⋅+⋅+⋅= (4)
xD =1 (5)

10 QxD ⋅= (6)

2Qy = (7)

 A second evolved solution has been obtained with
another state assignment: S0 – 000, S1 – 001, S2 – 011,
S3 – 111, S4 – 110 and S5 – 100. The equations of the
combinational circuit are:

122 QxQxD ⋅+⋅= (8)

021 QxQxD ⋅+⋅= (9)

010 QxQxD ⋅+⋅= (10)

0Qy = , (11)

A not as good as state assignment may conduct to
much more complex equations. For example, if the codes
of the states are: S0 – 000, S1 – 001, S2 – 010, S3 – 011,
S4 – 100 and S5 – 101, then:

010222 QQxQQQxD ⋅⋅+⋅+⋅= (12)

0211 QQxQxD ⋅⋅+⋅= (13)

12020110 QQxQQxQQQxD ⋅⋅+⋅⋅+⋅+⋅= (14)

012 QQQy ⋅+= (15)

Equations (12-15) have been obtained by using
Karnaugh maps, in a manual design technique. All these
three solutions of the FSM have been implemented in
both above mentioned Xilinx PLD circuits and the results
are discussed in Section III.

D Q

Q

D Q

Q

D Q

Q

1

2

0
CLK

X

Y

Fig. 3. Evolved optimal circuit solution of the sequence detector by
using the equations (4-7).

D. A Computer Interface
The FSM represented in Fig. 4 is a computer interface

for serial communication between two computers. A
transition from one state to another depends from only
one of the 4 inputs 4,1, =ixi . The circuit has 4 outputs,
each of them beeing in 1 logic only in a single state. The
FSM has 6 states and has been presented in [5].
 With the state assignment given in Fig. 4, the
conventional design of this circuit gives the following
equations for excitation functions:

120132 QQQQxD ⋅+⋅⋅= (16)

01240121 QQQxQQxD ⋅+⋅+⋅⋅= (17)

010120210 QQQQxQQxD ⋅+⋅⋅+⋅⋅= (18)

For the output functions, the equations are:

011 QQy ⋅= (19)

0122 QQQy ⋅⋅= (20)

123 QQy ⋅= (21)

124 QQy ⋅= (22)

 Evolutionary design of this circuit was done in a
different way than in previous subsection. Each of these
boolean functions has a maximum number of 5 inputs and
a maximum number of 4 minterms. If we want to
implement these functions in a PLD structure (an AND
array and logic cells configurable as OR gate), then the
number of fuse array links is 2 5 , and we may to
consider this number as the total length of the
chromosome.

4 40⋅ ⋅ =

We have used a standard GA, with 30 chromosomes in
population, one point crossover, and 2% mutation rate.
Six chromosomes are replaced each generation and the
stop criterion is the number of generations.

First International Symposium on Electrical and Electronics Engineering – ISEEE-2006, Galati, Romania

S

S0: 000
S1: 001
S2: 010
S3: 011
S4: 100
S5: 110

S0

S1

S2

S3

S4

S5

Yi

Xi or Xi

i = 1,2,3,4

X1

X2

X3

X4

Y1

Y2

Y3

Y4

X1

X2X3

X4

X4

Fig. 4. The state transition graph of a computer interface and manual
state assignment.

Our 100% fitness criterion was a feasible solution in a
CPLD structure, and not the minimization of the number
of gates. The complete cost of the whole combinational
circuit is consisted of 15 gates and 37 inputs for
conventional design, and 30 gates and 102 inputs for
alternative evolutionary design.. The schematic diagram
of this combinational circuit is given in Fig. 5 ([5], [6]).

III. EXPERIMENTAL RESULTS

All the circuits designed in previous section have been

implemented in real PLDs. We have used two integrated
circuits, a CPLD and a FPGA, both from Xilinx, Inc.

A. Experiments with CPLD
The first circuit used in our experiments is

XCR3064XL, a Xilinx CPLD with 64 macrocells and
1500 usable gates, providing low-power and very high
speed, and beeing in-system programmable through
JTAG IEEE 1149.1 Interface.

Unfortunately, this circuit has only 1000 erase/
programming cycles guaranteed, so it can not be used
with intrinsic EHW.

The Xilinx XCR3064XL CPLD is mounted on a
development board, called Digilab XCRP, delivered by
Digilent, Inc. This low cost platform can be used to
implement a wide variety of digital circuits. XCRP board
uses a 44-pin PLCC package, with four used for Vcc
connections, three for GND, and five for JTAG
programming. All remaining 32 I/O pins are routed to the
expansion connector, and 31 are also routed to on-board
devices (4 for pushbuttons, 8 for slide switches, 8 for
LEDs, 10 for the seven-segment display and one for the
system clock).
 The XCRP board uses a DB-25 parallel port connector
to route JTAG programming signals from a host
computer to the CPLD. The programming circuit simply
connects the parallel port pins driven by the Xilinx CAD
tools directly to the CPLD programming pins. We have
used

Fig. 5. An evolved nonoptimal solution of the computer interface.

Xilinx ISE 6.1i, a complete CAD environment for
implementation of complex digital circuits. We have
generated the source file of the new project (schematic
diagram or VHDL) and have obtained the fitter report and
the timing report of the circuit. The bit file may be
downloaded in the CPLD using Xilinx’s iMPACT
programmer tool from the ISE 6.1i.

We have implemented and analysed all the circuits
discussed in Section II. In the case of the boolean
function, we have obtained the same results for all
different equations done there. The circuit has used a
single macrocell from the maximum number of 64 (that is
1/64), only two product terms from the maximum number
of 224 (that is 2/224), and only 3 function block inputs
from the total number of 160 (that is 3/160). The pad to
pad delay is 6 ns, and the total delay of the circuit is not
more than this value. We can assume that our software
finds an optimal way in connecting the hardware
resources of the circuit, even if the function is not done in
a minimal form.
 Previous conclusion is for pure combinational circuits.
In sequential circuits, the optimal state assignment is
crucial. The sequence detector, implemented with the
equations (4-7), has used only 3/64 macrocells, 3/224
product terms, and 3/160 function block inputs. The same
circuit, implemented with the equations (8-11), has 3/64
macrocells, 4/224 product terms, and 4/160 function
block inputs. The third circuit, implemented by manual
design (equations 12-15), has the worse share of
resources: 4/64 macrocells, 9/224 product terms, and
4/160 function block inputs. Even the combinational time
delay is different for these circuits (4.7ns, 5.2ns and
7,2ns in that order). All these results are shown in the
Table I. It’s true that the main differences in the
complexity of these three circuits are given by the state
assignment. In the best solution, the state assignment has
been evolved with a GA.

The computer interface, implemented by manual
design with the equations (16-22), has used 7/64
macrocells, 11/224 product terms, and 7/160 function
block inputs. .

First International Symposium on Electrical and Electronics Engineering – ISEEE-2006, Galati, Romania

TABLE I
IMPLEMENTATION OF A SEQUENCE DETECTOR IN CPLD

Sequence Detector Results after fitting
 in CPLD eq. 4-7 eq. 8-11 eq.12-15

time delay (ns) 4,7 5,2 7,2
number of macrocells 3 3 4
number of product terms 3 4 9
number of block inputs 3 4 4
number of flip-flops 3 3 3
number of I/O pins 3 3 3

TABLE II

IMPLEMENTATION OF A COMPUTER INTERFACE IN CPLD
Computer Interface Results after fitting

in CPLD eq.16-22 GA
number of macrocells 7 7
number of product terms 11 10
number of block inputs 7 7
number of flip-flops 3 3
number of I/O pins 9 9

Evolutionary design, with the same state assignment,
provides much more complicated equations. In this case,
the complete cost of the whole combinational circuit is
consisted of 30 gates and 102 inputs. Surprising is the
fact that the implementation of this complex circuit in
XCR3064XL CPLD has used only 7/64 macrocells,
10/224 product terms, and 7/160 function block inputs.
This is even a better result than in preceding case,
because the number of product terms is less with 1. Both
implementations have used the same number of flip-flops
(that is 3/64) and the same number of pins used like
inputs/outputs (that is 9/32). We have preserved the state
assignment of the FSM, and the subcircuits are in fact as
pure combinational circuits. A very interesting fact is that
our GA have supplied a better solution than the one given
by the minimization tool used for this purpose by the
CAD software. All these results are given in the Table II.

B. Experiments with FPGA
The second circuit used in our experiments is Spartan-3

XC3S200, a Xilinx FPGA, which includes 4320 logic cell
equivalents, twelve 18K-bit block RAMs, hardware
multipliers, clock managers and up to 173 user-defined
I/O signals.
 This FPGA circuit is mounted on a Spartan-3 Starter
Kit Development Board, with 2Mbit in-system
programmable configuration Flash PROM, 1M-byte of
Fast Asynchronous SRAM, 8-color VGA display port, 9-
pin RS-232 Serial Port, a PS/2 port, slide switches,
buttons and LEDs. The board is in-system programmable
through JTAG IEEE 1149.1 Interface, connected to PC
parallel port.

The design step is called “fitting” to “fit” the design to
the target device. In CPLD, a device with a fixed
architecture, the software needs to pick the gates and
interconnect paths that match the circuit. The term
“fitting” has historically been used to describe the
implementation process for CPLD devices and “place and
route” has been used for FPGAs. Implementation is
followed by device configuration, where a bitstream is
generated from the physical place and route, and
downloaded into the target programmable device.

TABLE III
IMPLEMENTATION OF A BOOLEAN FUNCTION IN FPGA

 Boolean Function Results after placing
and routing in FPGA eq.1 eq.2 eq.3 CS
max. path delay (ns) 10,4 10,0 10,2 10,6
number of 4 in. LUTs 1 1 1 1
number of bonded IOBs 4 4 4 4
number of slices 1 1 1 1
total equivalent gates 6 6 6 6
additional JTAG gates 192 192 192 192
peak memory usage (M) 65 65 65 65
total time to PAR (sec) 2 2 2 2

TABLE IV

IMPLEMENTATION OF A SEQUENCE DETECTOR IN FPGA

 Sequence Detector Results after placing
and routing in FPGA eq.4-7 eq.8-11 eq.12-15
Min. clock period (ns) 4,630 3,618 5,844
number of 4 in. LUTs 2 3 4
number of bonded IOBs 2 3 3
number of slices 2 2 2
number of slice flip-flops 3 3 3
number of GCLKs 1 1 1
total equivalent gates 39 45 51
additional JTAG gates 144 144 144
peak memory usage (M) 65 65 65
total time to PAR (sec) 2 2 2

For FPGAs the implementation process undertakes 4

steps: “translate”, that interprets the design and runs a
Design Rule Check (DRC), “map” that calculates and
allocates resources in the targeted device, “place and
route” that places the logic blocks in a logical position
and utilises the routing resources, and “configure” that
creates a programming bitstream.

Results after “place and routing” step for our boolean
function, are given in the Table III. We have used the first
3 equations given in the Section II and the Canonical Sum
(CS) of the minterms ([9]).

 The program has used only 1 four-input Look-Up
Table (LUT) from the total number of 3840. A LUT is in
essence a piece of SRAM. The inputs to a LUT give the
address where the desired value is stored. For a boolean
function, a LUT can be made by storing the correct
outputs in the slots to which the inputs point. Current
logic blocks are based on LUTs in order to minimize
delay and avoid wasting space. LUTs may have any
number of inputs, leading to logic blocks of anywhere
from medium to very coarse granularity. In [7] it was
demonstrated that 4 inputs LUTs are indeed best for
optimizing both speed and area of FPGA. This 4 inputs
LUTs remain the industry standard for FPGAs, although
in [2] has been discovered that sometimes grouping
several connected 4 inputs LUTs into a single logic block
minimizes delays and area.

Another difficult problem is the optimizing the routing
of wires between logic blocks. The greatest area of an
FPGA is used for routing, and it has the potential to cause
a great deal of delay. The CS representation of the
function has the maximum combinational path delay
(about 10,6 ns), the Karnaugh Map has a delay of 10,4 ns,
and the evolved function has a delay of 10,2 ns. The
minimum delay is obtained for equation (2), but we must
remember that this representation has been generated in
.

First International Symposium on Electrical and Electronics Engineering – ISEEE-2006, Galati, Romania

TABLE V
IMPLEMENTATION OF A COMPUTER INTERFACE IN FPGA

 Computer Interface Results after placing
and routing in FPGA eq.16-22 GA
min. clock period(ns) 5,078 6,470
number of 4 in. LUTs 9 11
number of bonded IOBs 9 9
number of slices 3 3
number of slice flip-flops 3 3
number of GCLKs 1 1
total equivalent gates 81 93
additional JTAG gates 432 432
peak memory usage (M) 65 65
total time to PAR (sec) 2 2

an heuristic way, there is no algorithm for this solution.
The best known algorithm remains the evolutionary one,
presented in Section II.

In sequential circuits, the optimal state assignment is
crucial. The best implementation of the sequence detector
is given by the equations (4-7), but the minimum clock
period is greater than in second implementation (a longer
combinational path delay). In our circuit, the total number
of LUTs is 3840, the total number of slice flip-flops is
also 3840, the total number of slices is 1920, the total
number of bonded IOBs is 173 and the total number of
GCLKs is 8. Comparable results have been get with this
circuit in CPLD implementation. It’s true that the main
differences in the complexity of these three circuits are
given by the state assignment. In the best solution, the
state assignment has been evolved with a GA ([1]).

If we are looking now in the table 5, we can see, for
the first time, that an evolutionary algorithm (GA) is
worse than a conventional one. We must remember again
that in this case, our fitness criterion was a feasible
solution in a CPLD structure, and not the minimization of
resources in FPGA. As we can see, this evolutionary
solution is bad for a FPGA implementation, but was very
good for a CPLD one.

IV. CONCLUSION

In this paper we have compared two different

paradigms in digital design: the conventional design and
the evolutionary design. Our goal was to optimize the
digital circuit and to implement it with minimum
resources in PLDs.
 We have shown that pure combinational circuits are
implemented almost optimal, even if the boolean
functions are faraway of their minimal form, that is
software finds the optimal way in connecting the
hardware resources of the circuit. Even in this case, an
evolutionary algorithm may offer a less maximum
combinational path delay and may be considered.
 Sequential circuits are more sensitive, because of the
state assignment, but evolutionary design assures a better
fitting of circuit resources in all cases that has been
investigated. The goal of the fitness must be the minimum

resources in FPGA, and the state assignment must be
evolved with a GA.
 Future research must be done in this area. Firstly it is
important to find a better representation of the circuit in
chromosomes, because complex functions need a great
number of architecture bits, which directly influences the
GA search space ([4], [8]).

ACKNOWLEDGMENT

The authors would like to thank the Xilinx, Inc. for

their academic donation (ISE 6.1i software, XCR3064
CoolRunner Board and Spartan-3 System Board – 200K).

REFERENCES

[1] B. Ali, A. E. A. Almaini, and T. Kalganova, “Evolutionary
Algorithms and Their Use in the Design of Sequential Logic
Circuits”, Genetic Programming and Evolvable Machines, vol. 5,
no. 1, 2004, pp. 11-29.

[2] P. Chow, S. O. Seo, J. Rose, K. Chung, G. Paez Monzon, and I.
Rahardja, “The Design of an SRAM-Based Field-Programmable
Gate Array. Part I: Architecture”, IEEE Transactions on VLSI
Systems, vol. 7, no. 2, 1999, pp. 191-197.

[3] C. C. Coello, A. D. Christiansen, and A. H. Aguirre, “Use of
Evolutionary Techniques to Automate the Design of
Combinational Circuits”, International Journal of Smart
Engineering System Design, vol. 4, 2000, pp. 299-314.

[4] H. Iba, M. Iwata, and T. Higuchi, “Machine Learning Approach to
Gate-Level Evolvable Hardware”, First International Conference
on Evolvable Systems, ICES’96, Tsukuba, Japan, October 1996,
pp. 327-343.

[5] R. Popa, “Evolvable Hardware in Xilinx XCR 3064 CPLD”, IFAC
Workshop on Programmable Devices and Systems, PDS 2004,
Cracow, Poland, 18-19 November, 2004, pp. 232-237.

[6] R. Popa, D. Aiordăchioaie, G. Sîrbu, “Evolvable Hardware in
Xilinx Spartan3–FPGA”, 2005 WSEAS International Conference
on Dynamical Systems and Control, Venice, Italy, 2-4 November,
2005, pp. 66-71.

[7] J. Rose, A. El Gamal, and A. Sangiovanni - Vincentelli,
“Architecture of Field-Programmable Gate Arrays”, Proceedings
of the IEEE, vol. 81, no. 7, 1993, pp. 1013-1029.

[8] A. Thompson, “An Evolved Circuit, Intrinsic in Silicon, Entwined
with Physics”, First International Conference on Evolvable
Systems, ICES’96, Tsukuba, Japan, October 1996, pp. 390-405.

[9] J. Wakerly, Digital Design: Principles and Practices, Third
Edition. New-Jersey: Prentice Hall, 2000

Rustem Popa (M’04) was born in Galaţi, Romania, in 1960. He
received the engineering degree from the “Politehnica” University,
Bucharest, Romania, in 1984. In 1999, he received the Ph.D. degree
from the “Dunărea de Jos” University, Galaţi, Romania, for his work on
evolutionary algorithms applied on reconfigurable digital circuits.

He worked for almost two years as a Hardware Engineer in the
Shipyard in Galati. From 1986 to 1990, he spent four years as a Design
Engineer and then as a Scientific Researcher at the Research and Design
Institute for Shipbuilding in Galati. Since 1990 he is with the “Dunărea
de Jos” University in Galaţi. He is currently an Associate Professor at
the Department of Electronics and Telecommunications, Faculty of
Electrical and Electronics Engineering. He is author and coauthor of
four books and over 40 journal and conference papers. His research
interests include computational intelligence, evolvable hardware, digital
signal processing and medical electronics.

Dr. Popa is a member of the Romanian Society for Automatics and
Technical Informatics (SRAIT).

	I. INTRODUCTION
	A. Genetic Learning in EHW
	B. A Boolean Function
	C. A Sequence Detector
	Fig. 3. Evolved optimal circuit solution of the sequence de
	D. A Computer Interface
	A. Experiments with CPLD
	B. Experiments with FPGA

	IV. Conclusion

