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Abstract. Evolutionary systems are designed by the means of evolutionary computation. These
“designs” are evolved by a process of natural selection, like in the living matter. The mechanism of
evolution is entirely blind and has no particular object other than survivability. The survivability of the
organism can be seen as a process of assembling a larger system from a number of component parts
and then testing the organism in the environment in which it finds itself. The concept of assemble-and-
test together with an evolutionary algorithm can explore the entire design space because of the absence
of imposed rules of design. In this way, in electronics, evolutionary design becomes in fact an
Invention Machine that generates new unexpected and usually useful electronic circuits. We have
prepared some programs with Graphic User Interfaces (GUIs) in Matlab5.3 for evolutionary
experiments with digital and analog electronic circuits. All these programs have been used with our
students in the laboratory of Evolutionary Systems.

Introduction

There is a great difference between the way in which physical systems have been designed by
blind evolution and the methods employed by human designers. In the former, entire systems
are constructed and tested in situ without a conscious application of principles. In the latter,
systems are developed by a process of human creation, which employs a huge collection of
rules, concepts and principles. It is indeed curious that organisms such as ourselves  who are
capable of imagining a world that operates according to definite laws and abstract design
process were themselves produced by a mechanism that is entirely blind and has no particular
object other than survivability [1].

Today we can find evolutionary systems in the field of visual arts, music, architecture,
designs, and, of course, in the field of electronic circuit design. The building of new electronic
circuits by evolutionary computation has been created the concept of Evolvable Hardware
(EHW). Research in EHW can be divided into intrinsic evolution, when each new circuit is
built in electronic hardware and tested, and extrinsic evolution, that uses a model of the
hardware and evaluates the circuit by simulation in software.

We are convinced that very soon, as reprogrammable integrated circuits will become
larger and larger, EHW will be dominant in electronics, and the electronic engineer must be
ready for this future evolution. We have prepared some laboratories of extrinsic evolution of
digital and analog circuits, and for solving of some wellknown optimization problems, like
the generation of test vectors in digital circuits, the finding of the global minima in a



multimodal function, or the solving of the Traveling Salesman Problem (TSP). We have also
prepared some laboratories of intrinsec evolvable hardware of digital circuits by using
common digital CMOS circuits, but these implementations are not presented in this paper.

A brief introduction in genetic algorithms

Almost all our implementations in this paper are based on Genetic Algorithms (GAs), an
adaptive searching technique for solving optimisation problems based on the mechanics of
natural genetics and natural selection. The success of the application of GAs to an
optimisation problem depends on the representation of chromosomes, fitness function,
method of crossover, mutation operation, and on the diverse information from the
chromosomes. When the diversity is lost before the global optimum solution is found, the
performance of GAs deteriorates and their solution processes converge prematurely.
Moreover, the mutation operation is important. While the mutation operation adds new
information to a chromosome, it can also destroy useful information held in the chromosome.

In GAs the search is conducted using information of a population of candidate
solutions, called chromosomes, so that the chance of the search being settled in a local
optimum can be significantly reduced. Four essential components need to be designed in
applying a GA for an optimisation problem: chromosomes representation, crossover operator,
mutation operator and fitness function.

Each chromosome is represented by a binary string of finite length. The function of
the crossover operator is to generate new child chromosomes from two selected parents
chromosomes. We have used uniform crossover with a high rate, even if the computation
effort in exploring unpromising regions of the solution space may be higher. Mutation
operator changes the value of one bit in the chromosome, with some probability. If the
frequency of the mutation operation is too high, valuable old information may be destroyed in
the chromosomes. On the other hand, if the frequency is low, the chromosomes remain
virtually unchanged and little information will be added to assist the search in GA. After all,
the fitness function can be defined in terms of the objective function of the optimisation
problem. The search for the global optimum solution is then equivalent to finding the
chromosomes having the maximum fitness.

The structure of a Standard Genetic Algorithm (SGA) is as follows:
begin

- generate randomly the initial population of chromosomes;
repeat

- calculate the fitness of chromosomes in current generation;
repeat
    - select proportional with fitness, in a stochastic manner, 2 chromosomes as parents;
    - apply crossover to the selected parents to obtain 2 child chromosomes;

      - calculate the fitness of chromosomes;
 until end of the number of new chromosomes
- apply mutation to the new chromosomes;
- update the population, in accordance with the fitness of each chromosome;

until end of the number of generations
end

Like mutation, crossover may be applied with some probability to reduce the computation
effort, and the number of generations can be conveniently expressed as number of iterations.



Cellular automata, multimodal functions and TSP

Cellular Automata (CA) are a scheme for computing using local rules and local
communication. Typically a CA is defined on a grid, with each point on the grid representing
a cell with a finite number of states. A transition rule is applied to each cell simultaneously.
Typical transition rules depend on the state of the cell and its (4 or 8) nearest neighbors,
although other neighborhoods are used. We have used four different types of CA: Conway’s
life, excitable media, forest fire and diffusion limited aggregation. The last one system
simulates sticky particles aggregating to form a fractal structure, like in figure 1. These
particles are assumed to be bouncing around in some dense (but invisible) liquid. The effect is
to randomize the direction of motion of every particle at every time step. Put differently,
every time-step is a collision step. The simulation is also seeded with one fixed particle in the
center of the array. Any diffusing particle which touches it sticks to it, and itself becomes a
non-moving, sticky particle.

Fig. 1   A GUI for experiments with some types of bidimensional cellular automata

Multimodal Functions (MF) are frequently used to compare the efficiency of different
search algorithms. We have implemented a GA for minima search in a set of eight most
known unidimensional and bidimensional MF (Rastrigin function in the figure 2).

Fig. 2   A GUI for experiments with some multimodal test functions



We can see that the global minima of the function presented in the figure 2 is f(0) = 0,
and this result is achieved after almost 50 generations (the lower line in the figure 2). The GA
has a population of 20 chromosomes, the crossover rate is 80% and the mutation rate is 1%.
The fitness of the worse chromosomes decreases in the process of evolution (the upper line in
the figure 2), because these chromosomes are not eliminated with each new generation. If we
decide to exclude them, then the fitness of the whole population increases in time.

TSP is one of the most interesting problems in optimization. The traveling salesman
must visit every city in his territory exactly once and then return to the starting point. The goal
is the minimization of the cost of travel between all the cities, that is the total distance
between the cities. We have presented two distinct methods for solving this problem. In the
former, we have used a heuristic approach which solves the problem very quickly with  an
acceptable result, even for a great number of cities (200 for example). In the latter, we have
used a GA with an adequate representation of chromosomes, the final result is probably
better, but the time of the searching increases substantially. The GUI from the figure 3
presents a solution with GA for 30 cities placed randomly in the left. In the right we can see
the evolution of the fitness (the distance between cities) in 200 generations, but the minimum
distance is achieved after less than 150 generations. The GA has a population of 100
chromosomes, the crossover rate is 80% and the mutation rate is 1%. The number of replaced
chromosomes with each new generation is sufficiently high: 40 from the entire population of
100 chromosomes.

Fig. 3   A GUI for the solving of the TSP problem

Evolutionary synthesis of digital circuits

Two laboratories have been prepared for the purpose of automated generation of test vectors
in digital circuits. If we want to generate a test to detect a stuck-at 0 fault in the marked node
of the circuit represented in the figure 4, the required vector is 1111111111000000000, a
combination of bits nearly impossible to find using a random approach [4]. The GA used to
solve this problem finds the correct solution in 40 generations. The algorithm uses a
population of 32 chromosomes and a mutation rate of 3%. Fitness was calculated like the sum
of (1 if fault is excited or 0 otherwise) + (fraction of inputs in AND gate set to 1) + (fraction
of inputs in OR gate set to 0).



Fig. 4   A GUI for the generation of a test vector for a stuck-at 0 fault in the marked node

Fig. 5   A GUI for the generation of an optimum set of test vectors by hibridation of a GA

By using the GUI from the figure 5, we can solve the Fault Coverage Code Generation
Problem for a more complex combinational logic. The problem consists in finding of a given
number of test vectors that maximizes the fault coverage of the circuit. We have chosen two
ways of hibridation of the SGA: by using the inductive search, like in the figure 5, or by using
the simulated annealing algorithm. The example from the figure 5 shows that only 6 test
vectors could cover more than 75% from the total number of stuck-at 0 faults in the circuit.

Figure 6 shows a method of coding of a digital circuit with 4 types of gates. Using this
type of convention, we have achieved by evolution the circuit from the figure 7 for the
function 213 xxxf ⋅⊕= .
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Fig. 6  An example of a digital circuit at gate level and the chromosome coding
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Fig. 7   The circuit achieved by evolution for the function 213 xxxf ⋅⊕=  and the evolution of
the fitness across 50 generations

Evolutionary synthesis of analog circuits

Analog circuit synthesis entails the creation of both the topology and the sizing (numerical
values) of all of the circuit’s components. The difficulty of this problem is well known and
the first auspicious approach, based on genetic programming, was presented in [2]. Another
method of automatically generating analog circuit designs based on a parallel GA and a set of
circuit constructing primitives is presented in [3].

Both methods need a huge computation power (few days on a parallel computer with
64 processors in the first case, or a network of workstations in the second case). Our last
laboratory verifies through PSPICE simulation some of the circuits presented in [2] and [3].
Interesting is the fact that not all given circuits were successful in our simulations.

Conclusions

Evolutionary design is in fact a creative machine for new designs and may be useful for
electronic engineers. The laboratories presented here display the generation of complexity
with very simple rules, and the solving of complex NP-problems with simple GAs. GAs may
be useful for automated generation of test vectors and for synthesis of digital circuits. Analog
circuit synthesis needs more powerful computers, but in the near future this impediment will
be probably avoided.
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