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Abstract 
This paper develops a multiple hybrid optimi-
sation algorithm, by combining the genetic 
algorithms approach and two other optimisation 
techniques: inductive search and simulated 
annealing. Hybridation of a genetic algorithm 
with each of these techniques one by one has 
been tried before, but our approach facilitates 
the reduction of the search space with the 
introduction of more diversity in population to 
prevent the problem of premature convergence. 
This idea of double hybridation has been used to 
solve a NP-complete critical problem, as Auto-
matic Test Pattern Generation for digital 
circuits. The experiments have shown a better 
global performance in comparison  with other 
simple hybrid genetic algorithms.  

1 Introduction 
Genetic Algorithms are an adaptive searching technique 
for solving optimisation problems based on the 
mechanics of natural genetics and natural selection. The 
success of the application of Genetic Algorithms to an 
optimisation problem depends on the representation of 
chromosomes, fitness function, method of crossover, 
mutation operation, and on the diverse information held 
in the chromosomes. When the diversity is lost well 
before the global optimum solution is found, the 
performance of Genetic Algorithms deteriorates and their 
solution processes converge prematurely. Moreover, the 
mutation operation is important. While the mutation 
operation adds new information to a chromosome, it can 
also destroy useful information originally held in the 
chromosome. The performance of Genetic Algorithms 
can be improved if a mechanism can be incorporated in 
them so that the positive effects of mutation will be 
retained but the adverse effects will be eliminated [Wong, 
and Wong, 1994]. 

The paper develops a Genetic Algorithm hybridated 
twice: first with an Induction Search Algorithm, and then 
with a Simulated Annealing technique. We have 
compared the performances of this algorithm, with two 
Genetic Algorithms hybridated with each of these 
techniques one by one. The performances of these 

hybridated algorithms are demonstrated through an 
example of  Automatic Test Pattern Generation in a 
digital circuit.  

The rest of the paper is structured as follows. The 
Standard Genetic Algorihm is introduced in Section 2.  A 
simple hybridation of the Genetic Algorithm with the 
Inductive Search is described in Section 3, and the 
combination between Genetic Algorithm and the 
Simulated Annealing technique is presented in Section 4. 
Section 5 describes the Multiple Hybridated Genetic 
Algorithm. Section 6 points on the Automatic Test 
Pattern Generation problem and the last two sections, 7 
and respectively 8, presents our experiments and 
conclusions.  

2 The Standard Genetic Algorithm 
In Genetic Algorithms the search is conducted using 
information of a population of candidate solutions, called 
chromosomes, so that the chance of the search being 
settled in a local optimum can be significantly reduced. 
Four essential components need to be designed in 
applying a Genetic Algorithm for an optimisation 
problem: chromosomes representation, crossover 
operator, mutation operator and fitness function. 

Each chromosome is represented by a binary string of 
finite length. The function of the crossover operator is to 
generate new child chromosomes from two selected 
parents chromosomes. We have used uniform crossover 
with a high rate, even if the computation effort in 
exploring unpromising regions of the solution space may 
be higher. Mutation operator changes the value of one bit 
in the chromosome, with some probability. If the 
frequency of the mutation operation is too high, valuable 
old information may be destroyed in the chromosomes. 
On the other hand, if the frequency is low, the 
chromosomes remain virtually unchanged and little 
information will be added to assist the search in Genetic 
Algorithm. After all, the fitness function can be defined 
in terms of the objective function of the optimisation 
problem. The search for the global optimum solution is 
then equivalent to finding the chromosomes having the 
maximum fitness.  

The structure of a Standard Genetic Algorithm is as 
follows: 
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begin 
Generate randomly the initial population of 
chromosomes; 
repeat 

- calculate the fitness of chromosomes in current 
generation; 
repeat  

- select proportional with fitness, in a stochastic 
manner, 2 chromosomes as parents;  
- apply crossover to the selected parents to obtain 
2 child chromosomes; 
- calculate the fitness of chromosomes; 

  until end of the number of new chromosomes 
- apply mutation to the new chromosomes; 
- update the population, in accordance with the 
fitness of each chromosome; 

until end of the number of generations 
end 
 

Like mutation, crossover may be applied with some 
probability to reduce the computation effort, and the 
number of generations can be conveniently expressed as 
number of iterations. 

3 The Inductive Genetic Algorithm 
The search space reduction methodology developed by 
Bilchev, and Parmee [1996] was called the inductive 
search. The problem of global optimisation is partitioned 
into a sequence of subproblems, which are solved by 
searching of partial solutions in subspaces with smaller 
dimensions.  

The structure of the Inductive Genetic Algorithm is as 
follows: 

 

begin 
 Initialize a partial solution for N = 1; 
 for k = 2 to N , 

Generate randomly the initial population of 
chromosomes; 

  repeat 
- append each chromosome to the partial solution, 
evaluate it and assign fitness;  
repeat  

- select proportional with fitness, in a stochastic 
manner, 2 chromosomes as parents;  
-apply crossover to the selected parents to 
obtain 2 child chromosomes; 
- calculate the fitness of chromosomes; 

   until end of the number of chromosomes 
- apply mutation to the new chromosomes; 
- update the population, in accordance with the 
fitness of each chromosome; 

until end of the number of generations 
  Update the partial solution; 
 end 
end 
 

The solution is generated step by step, beginning from 
the base of the induction and at each step following an 
induction rule to update the solution. First induction rule 
asserts that a set of local optima of dimension n+1 may 

be derived from the set of local optima of dimension n. 
The second induction rule asserts that global optima of 
dimension n+1 may be derived from the global optima of 
dimension n. 

The overall algorithm could also be viewed as a 
genetic algorithm with dynamic fitness function, i.e. the 
fitness function changes at each generation. The content 
of "for" cycle constitute a genetic algorithm, the rest 
implement the inductive search. 

4 Combining a Genetic Algorithm and 
Simulated Annealing Technique  

The optimisation process in Simulated Annealing is 
essentially a simulation of the annealing process of a 
molten particle. Starting from a high temperature, a 
molten particle is cooled slowly. As the temperature 
reduces, the energy level of the particle also reduces. 
When the temperature is sufficiently low, the molten 
particle becomes solidified. Analogous to the temperature 
level in the physical annealing process is the iteration 
number in Simulated Annealing. In each iteration, a 
candidate solution is generated. If this solution is a better 
one, it will be accepted and used to generate yet another 
candidate solution. If it is a deteriorated solution, the 
solution will be accepted with some probability.  

The structure of a Genetic Algorithm hybridated by 
Simulated Annealing is as follows: 
 

begin 
Generate randomly the initial population of 
chromosomes and establish the temperature 

0T ; 
 repeat 

- calculate the fitness of chromosomes in current 
iteration; 
repeat  

- select proportional with fitness, in a stochastic 
manner, 2 chromosomes as parents;  
- apply crossover to the selected parents to obtain 
2 child chromosomes; 
- apply mutation to the new chromosomes; 
- calculate the fitness of chromosomes; 
- the new chromosomes are accepted or not 
accepted in the new population; 

  until end of the number of new chromosomes 
- update the population; 
- the temperature is decreased; 

 until end of the number of iterations 
end 
 

The probability of acceptance can be: 
 

( ) ( )( )TP ∆+=∆ exp11 ,                (1) 
 

where Δ is the amount of deterioration between the new 
and the old solutions and T is the temperature level at 
which the new solution is generated. 

The temperature is a parameter depending by the 
number of iterations. We have considered in our 
examples the following function of temperature: 

 

( ) ( )iTiT ln10 += ,                     (2) 



where 0T  is the initial high temperature and i is the 
number of iterations.  

The probability of acceptance will be low when the 
temperature is low. Some valuable chromosomes will be 
replaced during the entire period of evolution, but this 
chance is greately reduced towards the end of the 
process. In this way, sufficient diversity of chromosomes 
can be maintained and premature convergence can be 
eliminated.  

5 The Multiple Hybridated Genetic 
Algorithm  

Each of the two distinct methods of hybridation discussed 
above have some advantages. The inductive search effort 
at each inductive step controls the trade-off between the 
computational complexity and the expected quality of 
results, while Simulated Annealing avoids the premature 
convergence and reduces the adverse effects of the 
mutation operation.  

Our idea was to cumulate all these advantages in a 
single algorithm, through a double hybridation of  the 
Genetic Algorithm: with Inductive Search on the one 
hand, and with Simulated Annealing technique on the 
other hand. 

The structure of the Multiple Hybridated Genetic 
Algorithm is as follows: 

 

begin 
Initialize a partial solution for N = 1 and establish the 
initial temperature 0T ; 

 for k = 2 to N , 
Generate randomly the initial population of 
chromosomes; 

  repeat 
- append each chromosome to the partial solution, 
evaluate it and assign fitness;  
repeat  

- select proportional with fitness, in a stochastic 
manner, 2 chromosomes as parents;  
-apply crossover to the selected parents to 
obtain 2 child chromosomes; 
- apply mutation to the new chromo-somes; 
- calculate the fitness of chromosomes; 
- the new chromosomes are accepted or not 
accepted in the new population; 

   until end of the number of chromosomes 
- update the population, in accordance with the 
fitness of each chromosome; 
- the temperature is decreased; 

  until end of the number of generations 
  Update the partial solution; 
 end 
end 
 

The inductive formulation also gives meaning to 
intermediate solutions. The number k of partial solutions 
which gives a satisfactory global solution can serve as an 
efficient stopping condition. In this algorithm, appears 
like a new parameter the number of generations per 

inductive step. The search effort at each inductive step 
controls the trade-off between the computational 
complexity and the expected quality of results. 

6 The Automatic Test Pattern Generation 
Problem  

 Modern VLSI circuits usually contain in their structures 
test and monitoring systems, known as built-in self-test 
circuits (BIST). These circuits generate a sequence of 
input test vectors and expect a sequence of output 
vectors. These test patterns are generated automatic by 
BIST circuits. 

Fault analysis is the process used to determine the fault 
detection coverage of a particular design. The fault 
analysis process for a design involves the optimisation of 
the input stimulus to fully exercise all components to 
increase the testability, while logic simulation involves 
the optimisation of the functionality of the design. These 
tasks are very different processes, and both tasks are 
necessary within the design development process. The 
fault analysis process fits after the initial functional 
verification of the design and before the physical 
hardware testing of the product. 

The amount of fault coverage within a design depends 
on the following two factors: comprehensiveness of the 
test code, and inherent testability of the logic design. In 
this paper we concentrate on the first factor and formulate 
the problem of finding an effective set of  input test 
vectors as a search problem. 

The digital structures of PLA type, like the one 
presented in figure 1, are fully testable for  "stuck-at 0" 
faults. The binary function F depends of all 12 inputs, in 
order to eliminate possible constraints imposed on the 
test codes. We have injected in this circuit a number of 5 
random "stuck-at 0" faults. These faults are detected with 
the first 16 test vectors generated by the standard genetic 
algorithm. The waveforms achieved in PSPICE 
simulation are represented in figure 2. The arrows from 
the bottom of this representation show the instant of each 
fault detection. 

Hwang and Shen [1996] have established a relation to 
calculate the maximum number of possible "stuck-at 0" 
faults in a PLA structure.  

 

 
 

Figure 1. The PLA structure for implementation of the 
binary function F and 5 "stuck-at 0" faults. 



 
 

Figure 2. The test vectors and the coverage of the 5 faults 
indicated in the foregoing figure. 

 
They have shown that this number is:  

 

N N N Nin inv gmax = ⋅ + +2 ,               (3) 
 

where Nin  is the number of inputs, Ninv  is the number 
of invertors and N g  is the number of gates. In our case, 

N max = ⋅ + + =2 12 12 16 52  faults. 

7 Experiments 
We have conducted the experiments with all algorithms 
described above, in the purpose to find the maximum 
fault coverage with only 6 test vectors. We have tested 
the PLA structure from the figure 1 for about 50 potential 
"stuck-at 0" faults.  

If n is the number of covered faults and N is the 
number of all faults in the fault population, the associated 

fitness function is f n
N

= ⋅100% . There may also be a 

number of constraints concerning the possible 
combinations of input signals. The designers of the 
circuit define the set of legal combinations in terms of the 
legal states of a number of channels. The set of all legal 
templates defines the feasible region. 

The main genetic parameters used in these 
algorithms are: a population size of 20 chromosomes, 
uniform crossover with 100% rate, uniform mutation 
with 1% rate. Figure 3 shows the evolution of the 
standard genetic algorithm with changed parameters. 
These results represent the average values of 10 
succesive runs. We can see that algorithm is very 
sensitive to its basic parameters, and therefore the 
requirement of a careful setting of these parameters is 
absolute necessary. Popa, et al. (1998) has shown a 
much better performance of the Inductive Genetic 
Algorithm from this point of view. The hybridation of 
the    standard    genetic    algorithm    by     induction  
seems to be more robust, since the deviation of fault 
coverage is only 3%, comparatively with almost 15% 
in the case of standard genetic algorithm. 

The inductive search transforms the problem of finding 
a sequence of N test vectors that maximizes the fault 
coverage of a circuit, into the problem of finding a 
sequence of k test vectors that maximizes the fault             
.  

 

Figure 3.  Standard genetic algorithm with different 
parameters 

 

 

Figure 4.  Runs of the two genetic algorithms on a fault 
coverage problem  of 50 possible faults 

 
coverage, for each k = 1 to N.  

Figure 4 shows the comparative performances of the 
two genetic algorithms on a fault coverage problem 
consisting of 50 possible faults. The maximum fault 
coverage achieved with 6 input test vectors was about 
63% for the Standard Genetic Algorithm, and about 66% 
for the Induction Genetic Algorithm. These results 
represent the average values of 10 succesive runs. The 
horizontal levels in hybrid algorithm show the maximum 
fault coverage with 1, 2, 3, 4, 5 and 6 test vectors one-by-
one. 

Figure 5 shows the performance of the Inductive 
Genetic Algorithm as a function of the number of input 
test vectors. We can see that for a number of vectors 
N > 5  the Inductive Genetic Algorithm is more efficient, 
and a full 100% fault coverage is achieved with only 19 
test vectors in this case, and with 26 test vectors in the 
case of the Standard Genetic Algorithm. Thus the full 
coverage of the faults in this PLA structure is possible. 



 

Figure 5. The  fault  coverage as a  function of the 
number of input test vectors  

 

  

Figure 6. Runs of the two genetic algorithms on a fault 
coverage problem of 50 possible faults  

 
Figure 6 represents the comparative performances of 

the two genetic algorithms on the same problem. These 
results represent the average values of 5 succesive runs. 
The maximum fault coverage is better in the case of the 
hybridation between Simulated Annealing and Genetic 
Algorithm with about 1,3%.  

Simulations from the figure 7 point towards better 
performances of the Multiple Hybridated Genetic 
Algorithm by comparing with other simple hybridated 
algorithms discussed above.  

The maximum fault coverage achieved with the 
Multiple Hybridated Genetic Algorithm after 500 
iterations was about 69%, while the maximum fault 
coverage achieved with the Inductive Genetic Algorithm, 
the best of the two single hybridated genetic algorithms, 
was about 66%. These results represent the average 
values of 5 succesive runs. We have tried even with 10 or 
more number of runs, but the results are basically the 
same.  

 

Figure 7. Runs of the three hybridated algorithms on a 
fault coverage problem  of 50 possible faults 

  

 

Figure 8. Runs of the three hybridated algorithms on a 
fault coverage problem  of  200 possible faults 

 
Another set of experiments were made on a more 

complex digital structure with 200 faults in the fault 
population. Figure 8 shows the comparative perfor-
mances of the three hybridated genetic algorithms on this 
new fault coverage problem. The number of input test 
vectors is 24. After 250 fitness function calls, that is 25 
iterations, each with 10 generations per inductive step, 
the fault coverage of the Multiple Hybridated Genetic 
Algorithm is with about 1% better than the fault coverage 
of the Inductive Genetic Algorithm.  

Previous experiments with a standard genetic 
algorithm in which the chromosome coded all the 24 
input test vectors, each of length 12 bits, produced the 
best fault coverage of 57% [Bilchev and Parmee, 1996]. 
We have achieved about 59% with the combination 
between Simulated Annealing and Genetic Algorithm 
and almost 64% with the Multiple Hybridated Genetic 
Algorithm, which is the best solution of all hybridated 
algorithms discussed in this paper.   



8 Conclusions 
In this paper we have described a new algorithm based on 
a double hybridation of a classical genetic algorithm. As 
compared to previous experiments, our algorithm has 
improved the performance of fault coverage from 57% to 
almost 64%.  

This comparison is certainly thereabouts, because we 
didn't have any idea about the circuit used by Bilchev and 
Parmee [1996] in their experiments. All available 
information consists in a digital structure with 200 faults 
tested with a number of 24 input vectors, each of length 
12 bits. We have constructed a similar complex digital 
PLA structure, which has been tested in the same way.  

A more comprehensive result is the comparison of the 
Multiple Hybridated Genetic Algorithm with two other 
hybridated algorithms: the Inductive Genetic Algorithm 
and the Genetic Algorithm hybridated by Simulated 
Annealing. We have proved on two different examples, 
with different complexities, that the performance of the 
Multiple Hybridated Genetic Algorithm is better than the 
performance of any other algorithm obtained through 
simple hybridation of a standard genetic algorithm.  

The only drawback of this algorithm is most likely the 
requirement of an appreciable number of iterations until 
the straight result is delivered. This implies a sufficient 
high CPU time requirement. 
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