
Rustem Popa, Dorel Aiordăchioaie, Viorel Nicolau
Department of Electrical Engineering

University of Galati
Domnească Street 111, 6200 Galati

Romania
email: Rustem.Popa@ugal.ro, Dorel.Aiordachioaie@ugal.ro, Viorel.Nicolau@ugal.ro

Abstract
This paper develops a multiple hybrid optimi-
sation algorithm, by combining the genetic
algorithms approach and two other optimisation
techniques: inductive search and simulated
annealing. Hybridation of a genetic algorithm
with each of these techniques one by one has
been tried before, but our approach facilitates
the reduction of the search space with the
introduction of more diversity in population to
prevent the problem of premature convergence.
This idea of double hybridation has been used to
solve a NP-complete critical problem, as Auto-
matic Test Pattern Generation for digital
circuits. The experiments have shown a better
global performance in comparison with other
simple hybrid genetic algorithms.

1 Introduction
Genetic Algorithms are an adaptive searching technique
for solving optimisation problems based on the
mechanics of natural genetics and natural selection. The
success of the application of Genetic Algorithms to an
optimisation problem depends on the representation of
chromosomes, fitness function, method of crossover,
mutation operation, and on the diverse information held
in the chromosomes. When the diversity is lost well
before the global optimum solution is found, the
performance of Genetic Algorithms deteriorates and their
solution processes converge prematurely. Moreover, the
mutation operation is important. While the mutation
operation adds new information to a chromosome, it can
also destroy useful information originally held in the
chromosome. The performance of Genetic Algorithms
can be improved if a mechanism can be incorporated in
them so that the positive effects of mutation will be
retained but the adverse effects will be eliminated [Wong,
and Wong, 1994].

The paper develops a Genetic Algorithm hybridated
twice: first with an Induction Search Algorithm, and then
with a Simulated Annealing technique. We have
compared the performances of this algorithm, with two
Genetic Algorithms hybridated with each of these
techniques one by one. The performances of these

hybridated algorithms are demonstrated through an
example of Automatic Test Pattern Generation in a
digital circuit.

The rest of the paper is structured as follows. The
Standard Genetic Algorihm is introduced in Section 2. A
simple hybridation of the Genetic Algorithm with the
Inductive Search is described in Section 3, and the
combination between Genetic Algorithm and the
Simulated Annealing technique is presented in Section 4.
Section 5 describes the Multiple Hybridated Genetic
Algorithm. Section 6 points on the Automatic Test
Pattern Generation problem and the last two sections, 7
and respectively 8, presents our experiments and
conclusions.

2 The Standard Genetic Algorithm
In Genetic Algorithms the search is conducted using
information of a population of candidate solutions, called
chromosomes, so that the chance of the search being
settled in a local optimum can be significantly reduced.
Four essential components need to be designed in
applying a Genetic Algorithm for an optimisation
problem: chromosomes representation, crossover
operator, mutation operator and fitness function.

Each chromosome is represented by a binary string of
finite length. The function of the crossover operator is to
generate new child chromosomes from two selected
parents chromosomes. We have used uniform crossover
with a high rate, even if the computation effort in
exploring unpromising regions of the solution space may
be higher. Mutation operator changes the value of one bit
in the chromosome, with some probability. If the
frequency of the mutation operation is too high, valuable
old information may be destroyed in the chromosomes.
On the other hand, if the frequency is low, the
chromosomes remain virtually unchanged and little
information will be added to assist the search in Genetic
Algorithm. After all, the fitness function can be defined
in terms of the objective function of the optimisation
problem. The search for the global optimum solution is
then equivalent to finding the chromosomes having the
maximum fitness.

The structure of a Standard Genetic Algorithm is as
follows:

 Multiple Hybridation in Genetic Algorithms

begin
Generate randomly the initial population of
chromosomes;
repeat

- calculate the fitness of chromosomes in current
generation;
repeat

- select proportional with fitness, in a stochastic
manner, 2 chromosomes as parents;
- apply crossover to the selected parents to obtain
2 child chromosomes;
- calculate the fitness of chromosomes;

 until end of the number of new chromosomes
- apply mutation to the new chromosomes;
- update the population, in accordance with the
fitness of each chromosome;

until end of the number of generations
end

Like mutation, crossover may be applied with some
probability to reduce the computation effort, and the
number of generations can be conveniently expressed as
number of iterations.

3 The Inductive Genetic Algorithm
The search space reduction methodology developed by
Bilchev, and Parmee [1996] was called the inductive
search. The problem of global optimisation is partitioned
into a sequence of subproblems, which are solved by
searching of partial solutions in subspaces with smaller
dimensions.

The structure of the Inductive Genetic Algorithm is as
follows:

begin
 Initialize a partial solution for N = 1;
 for k = 2 to N ,

Generate randomly the initial population of
chromosomes;

 repeat
- append each chromosome to the partial solution,
evaluate it and assign fitness;
repeat

- select proportional with fitness, in a stochastic
manner, 2 chromosomes as parents;
-apply crossover to the selected parents to
obtain 2 child chromosomes;
- calculate the fitness of chromosomes;

 until end of the number of chromosomes
- apply mutation to the new chromosomes;
- update the population, in accordance with the
fitness of each chromosome;

until end of the number of generations
 Update the partial solution;
 end
end

The solution is generated step by step, beginning from
the base of the induction and at each step following an
induction rule to update the solution. First induction rule
asserts that a set of local optima of dimension n+1 may

be derived from the set of local optima of dimension n.
The second induction rule asserts that global optima of
dimension n+1 may be derived from the global optima of
dimension n.

The overall algorithm could also be viewed as a
genetic algorithm with dynamic fitness function, i.e. the
fitness function changes at each generation. The content
of "for" cycle constitute a genetic algorithm, the rest
implement the inductive search.

4 Combining a Genetic Algorithm and
Simulated Annealing Technique

The optimisation process in Simulated Annealing is
essentially a simulation of the annealing process of a
molten particle. Starting from a high temperature, a
molten particle is cooled slowly. As the temperature
reduces, the energy level of the particle also reduces.
When the temperature is sufficiently low, the molten
particle becomes solidified. Analogous to the temperature
level in the physical annealing process is the iteration
number in Simulated Annealing. In each iteration, a
candidate solution is generated. If this solution is a better
one, it will be accepted and used to generate yet another
candidate solution. If it is a deteriorated solution, the
solution will be accepted with some probability.

The structure of a Genetic Algorithm hybridated by
Simulated Annealing is as follows:

begin
Generate randomly the initial population of
chromosomes and establish the temperature

0T ;
 repeat

- calculate the fitness of chromosomes in current
iteration;
repeat

- select proportional with fitness, in a stochastic
manner, 2 chromosomes as parents;
- apply crossover to the selected parents to obtain
2 child chromosomes;
- apply mutation to the new chromosomes;
- calculate the fitness of chromosomes;
- the new chromosomes are accepted or not
accepted in the new population;

 until end of the number of new chromosomes
- update the population;
- the temperature is decreased;

 until end of the number of iterations
end

The probability of acceptance can be:

() ()()TP ∆+=∆ exp11 , (1)

where Δ is the amount of deterioration between the new
and the old solutions and T is the temperature level at
which the new solution is generated.

The temperature is a parameter depending by the
number of iterations. We have considered in our
examples the following function of temperature:

() ()iTiT ln10 += , (2)

where 0T is the initial high temperature and i is the
number of iterations.

The probability of acceptance will be low when the
temperature is low. Some valuable chromosomes will be
replaced during the entire period of evolution, but this
chance is greately reduced towards the end of the
process. In this way, sufficient diversity of chromosomes
can be maintained and premature convergence can be
eliminated.

5 The Multiple Hybridated Genetic
Algorithm

Each of the two distinct methods of hybridation discussed
above have some advantages. The inductive search effort
at each inductive step controls the trade-off between the
computational complexity and the expected quality of
results, while Simulated Annealing avoids the premature
convergence and reduces the adverse effects of the
mutation operation.

Our idea was to cumulate all these advantages in a
single algorithm, through a double hybridation of the
Genetic Algorithm: with Inductive Search on the one
hand, and with Simulated Annealing technique on the
other hand.

The structure of the Multiple Hybridated Genetic
Algorithm is as follows:

begin
Initialize a partial solution for N = 1 and establish the
initial temperature 0T ;

 for k = 2 to N ,
Generate randomly the initial population of
chromosomes;

 repeat
- append each chromosome to the partial solution,
evaluate it and assign fitness;
repeat

- select proportional with fitness, in a stochastic
manner, 2 chromosomes as parents;
-apply crossover to the selected parents to
obtain 2 child chromosomes;
- apply mutation to the new chromo-somes;
- calculate the fitness of chromosomes;
- the new chromosomes are accepted or not
accepted in the new population;

 until end of the number of chromosomes
- update the population, in accordance with the
fitness of each chromosome;
- the temperature is decreased;

 until end of the number of generations
 Update the partial solution;
 end
end

The inductive formulation also gives meaning to
intermediate solutions. The number k of partial solutions
which gives a satisfactory global solution can serve as an
efficient stopping condition. In this algorithm, appears
like a new parameter the number of generations per

inductive step. The search effort at each inductive step
controls the trade-off between the computational
complexity and the expected quality of results.

6 The Automatic Test Pattern Generation
Problem

 Modern VLSI circuits usually contain in their structures
test and monitoring systems, known as built-in self-test
circuits (BIST). These circuits generate a sequence of
input test vectors and expect a sequence of output
vectors. These test patterns are generated automatic by
BIST circuits.

Fault analysis is the process used to determine the fault
detection coverage of a particular design. The fault
analysis process for a design involves the optimisation of
the input stimulus to fully exercise all components to
increase the testability, while logic simulation involves
the optimisation of the functionality of the design. These
tasks are very different processes, and both tasks are
necessary within the design development process. The
fault analysis process fits after the initial functional
verification of the design and before the physical
hardware testing of the product.

The amount of fault coverage within a design depends
on the following two factors: comprehensiveness of the
test code, and inherent testability of the logic design. In
this paper we concentrate on the first factor and formulate
the problem of finding an effective set of input test
vectors as a search problem.

The digital structures of PLA type, like the one
presented in figure 1, are fully testable for "stuck-at 0"
faults. The binary function F depends of all 12 inputs, in
order to eliminate possible constraints imposed on the
test codes. We have injected in this circuit a number of 5
random "stuck-at 0" faults. These faults are detected with
the first 16 test vectors generated by the standard genetic
algorithm. The waveforms achieved in PSPICE
simulation are represented in figure 2. The arrows from
the bottom of this representation show the instant of each
fault detection.

Hwang and Shen [1996] have established a relation to
calculate the maximum number of possible "stuck-at 0"
faults in a PLA structure.

Figure 1. The PLA structure for implementation of the
binary function F and 5 "stuck-at 0" faults.

Figure 2. The test vectors and the coverage of the 5 faults
indicated in the foregoing figure.

They have shown that this number is:

N N N Nin inv gmax = ⋅ + +2 , (3)

where Nin is the number of inputs, Ninv is the number
of invertors and N g is the number of gates. In our case,

N max = ⋅ + + =2 12 12 16 52 faults.

7 Experiments
We have conducted the experiments with all algorithms
described above, in the purpose to find the maximum
fault coverage with only 6 test vectors. We have tested
the PLA structure from the figure 1 for about 50 potential
"stuck-at 0" faults.

If n is the number of covered faults and N is the
number of all faults in the fault population, the associated

fitness function is f n
N

= ⋅100% . There may also be a

number of constraints concerning the possible
combinations of input signals. The designers of the
circuit define the set of legal combinations in terms of the
legal states of a number of channels. The set of all legal
templates defines the feasible region.

The main genetic parameters used in these
algorithms are: a population size of 20 chromosomes,
uniform crossover with 100% rate, uniform mutation
with 1% rate. Figure 3 shows the evolution of the
standard genetic algorithm with changed parameters.
These results represent the average values of 10
succesive runs. We can see that algorithm is very
sensitive to its basic parameters, and therefore the
requirement of a careful setting of these parameters is
absolute necessary. Popa, et al. (1998) has shown a
much better performance of the Inductive Genetic
Algorithm from this point of view. The hybridation of
the standard genetic algorithm by induction
seems to be more robust, since the deviation of fault
coverage is only 3%, comparatively with almost 15%
in the case of standard genetic algorithm.

The inductive search transforms the problem of finding
a sequence of N test vectors that maximizes the fault
coverage of a circuit, into the problem of finding a
sequence of k test vectors that maximizes the fault
.

Figure 3. Standard genetic algorithm with different
parameters

Figure 4. Runs of the two genetic algorithms on a fault
coverage problem of 50 possible faults

coverage, for each k = 1 to N.

Figure 4 shows the comparative performances of the
two genetic algorithms on a fault coverage problem
consisting of 50 possible faults. The maximum fault
coverage achieved with 6 input test vectors was about
63% for the Standard Genetic Algorithm, and about 66%
for the Induction Genetic Algorithm. These results
represent the average values of 10 succesive runs. The
horizontal levels in hybrid algorithm show the maximum
fault coverage with 1, 2, 3, 4, 5 and 6 test vectors one-by-
one.

Figure 5 shows the performance of the Inductive
Genetic Algorithm as a function of the number of input
test vectors. We can see that for a number of vectors
N > 5 the Inductive Genetic Algorithm is more efficient,
and a full 100% fault coverage is achieved with only 19
test vectors in this case, and with 26 test vectors in the
case of the Standard Genetic Algorithm. Thus the full
coverage of the faults in this PLA structure is possible.

Figure 5. The fault coverage as a function of the
number of input test vectors

Figure 6. Runs of the two genetic algorithms on a fault
coverage problem of 50 possible faults

Figure 6 represents the comparative performances of

the two genetic algorithms on the same problem. These
results represent the average values of 5 succesive runs.
The maximum fault coverage is better in the case of the
hybridation between Simulated Annealing and Genetic
Algorithm with about 1,3%.

Simulations from the figure 7 point towards better
performances of the Multiple Hybridated Genetic
Algorithm by comparing with other simple hybridated
algorithms discussed above.

The maximum fault coverage achieved with the
Multiple Hybridated Genetic Algorithm after 500
iterations was about 69%, while the maximum fault
coverage achieved with the Inductive Genetic Algorithm,
the best of the two single hybridated genetic algorithms,
was about 66%. These results represent the average
values of 5 succesive runs. We have tried even with 10 or
more number of runs, but the results are basically the
same.

Figure 7. Runs of the three hybridated algorithms on a
fault coverage problem of 50 possible faults

Figure 8. Runs of the three hybridated algorithms on a
fault coverage problem of 200 possible faults

Another set of experiments were made on a more

complex digital structure with 200 faults in the fault
population. Figure 8 shows the comparative perfor-
mances of the three hybridated genetic algorithms on this
new fault coverage problem. The number of input test
vectors is 24. After 250 fitness function calls, that is 25
iterations, each with 10 generations per inductive step,
the fault coverage of the Multiple Hybridated Genetic
Algorithm is with about 1% better than the fault coverage
of the Inductive Genetic Algorithm.

Previous experiments with a standard genetic
algorithm in which the chromosome coded all the 24
input test vectors, each of length 12 bits, produced the
best fault coverage of 57% [Bilchev and Parmee, 1996].
We have achieved about 59% with the combination
between Simulated Annealing and Genetic Algorithm
and almost 64% with the Multiple Hybridated Genetic
Algorithm, which is the best solution of all hybridated
algorithms discussed in this paper.

8 Conclusions
In this paper we have described a new algorithm based on
a double hybridation of a classical genetic algorithm. As
compared to previous experiments, our algorithm has
improved the performance of fault coverage from 57% to
almost 64%.

This comparison is certainly thereabouts, because we
didn't have any idea about the circuit used by Bilchev and
Parmee [1996] in their experiments. All available
information consists in a digital structure with 200 faults
tested with a number of 24 input vectors, each of length
12 bits. We have constructed a similar complex digital
PLA structure, which has been tested in the same way.

A more comprehensive result is the comparison of the
Multiple Hybridated Genetic Algorithm with two other
hybridated algorithms: the Inductive Genetic Algorithm
and the Genetic Algorithm hybridated by Simulated
Annealing. We have proved on two different examples,
with different complexities, that the performance of the
Multiple Hybridated Genetic Algorithm is better than the
performance of any other algorithm obtained through
simple hybridation of a standard genetic algorithm.

The only drawback of this algorithm is most likely the
requirement of an appreciable number of iterations until
the straight result is delivered. This implies a sufficient
high CPU time requirement.

References
 [Bilchev and Parmee, 1996] George Bilchev and Ian

Parmee. Constraint Handling for the Fault Coverage
Code Generation Problem: An Inductive
Evolutionary Approach. In Proc. of 4-th
Conference on Parallel Problem Solving from
Nature (PPSN IV), pages 880-889, Berlin,
September 1996.

[Hwang and Shen, 1996] G. H. Hwang and W. Z. Shen.
Fault analysis and automatic test pattern generation
for break faults in programmable logic arrays. In
IEE Proc. – Circuits Devices Syst., Vol. 143, No. 3,
pages 157-166, June 1996.

[Popa et al.,1998] Rustem Popa, Constantin Cruceru, and
Mircea Iliev. A Hybrid Genetic Algorithm for
Automatic Test Pattern Generation. In The 10-th
Symposium on Modelling, Simulation and
Identification Systems (SIMSIS 10’98),pages 74-78,
Galati, Romania, October 1998.

[Wong and Wong, 1994] Kit Po Wong and Yin Wa
Wong. Development of Hybrid Optimisation
Techniques Based on Genetic Algorithms and
Simulated Annealing. In Workshop on Evolutionary
Computation (AI’94), pages 127-154, Armidale,
Australia, November 1994.

