
THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 1998 YEAR, ISSN 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

SELF-ADAPTATION AND SELF-REPAIR IN EVOLVABLE HARDWARE

Rustem POPA, Mircea ILIEV

“Dunărea de Jos” University of Galati, Automatic Control and
Electronics Department, Domnească Street - 111, Galaţi - 6200,
Romania, Tel. / fax: 036.460182, e - mail: rpopa@ac.ugal.ro

Abstract: Evolvable Hardware is a hardware which modifies its structure in order to
adapt to the environment in which it is embedded. It is implemented on a
programmable logic device, whose architecture can be altered by downloading a
binary bit string called architecture bits. The architecture bits are adaptively
acquired by genetic algorithms. In this paper we considered a simple Finite State
Machine and we proved through simulation that the evolved circuit is a flexible and
fault-tolerant structure which responds in real-time to a changing environment.

Keywords: Genetic Algorithms, Evolvable Hardware, Machine Learning,
Programmable Logic Devices, Fault-Tolerant Systems.

1. INTRODUCTION

Evolvable Hardware is a hardware built on a software
reconfigurable logic device, such as Programmable
Logic Device (PLD) and Field Programmable Gate
Array (FPGA). Evolvable Hardware architecture can
be reconfigured through the evolutionary method so
as to adapt to the new environment. If hardware
errors occur or a new hardware functionality is
required, Evolvable Hardware can alter its own
hardware structure in order to accommodate such
changes.

The target task of the gate-level Evolvable Hardware
is a Boolean concept formation. An n-variable
Boolean function is defined as a function whose
ranges and domain are constrained to have 0 (false)
or 1 (true) values, i.e.

()y f x x xn= =

1 2
0

, , ... ,
, false value

1, true value (1)

where the n variables are

{ } { } { }x x xn1 20 1 0 1 0 1∈ ∧ ∈ ∧ ∧ ∈, , ... , . (2)

The goal of Boolean concept formation is to identify
an unknown Boolean function, from a given set of
observable input and output pairs, i.e.

() { }{ }x x x y i Ni i in i
n

1 2
10 1 1, , ... , , , | , ... , ,∈ =+ (3)

where N is the number of observations. In general, N
is less than the maximum possible number of
22n

distinct n-variable Boolean functions. Since the
ratio of the size of the observable data to the size of

the total search space,
N

n
22

, drastically decreases

with n, effective generalizing ability is required for
Boolean concept learning. Some evolutionary
methods have been proposed for this purpose (Iba, et
al., 1996; Michalewicz, 1994).

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 1998 YEAR, ISSN 1221-454X

x1 x2 x x3 4

F

Architecture Bit Register

Inputs

Fuse
array

.

Logic
cell

Output
1

Fig. 1. A simplified PLD (Programmable Logic
Device) Structure

In Evolvable Hardware adaptation takes the form of
direct modification of the hardware structures
according to rewards received from the environment.
This results in a number of advantages. Adaptation in
real-time is feasible due to a speed-up by many orders
of magnitude. The system will be flexible and fault-
tolerant since this new hardware can change its own
structure in the case of environmental change or
hardware error.

The feasibility of hardware evolution in
combinational circuits was reported in some papers.
Higuchi, et al. (1994) has implemented four Boolean
functions for a robot control system, and Zebulum, et
al. (1996) has designed some basic circuits as
multiplexer 4-1 or decoder 3-8. Our goal is to
demonstrate that an evolved sequential circuit is an
adaptive and fault-tolerant structure.

The rest of this paper is structured as follows. Section
2 describes the fundamental principle of Evolvable
Hardware. Section 3 discuss in more detail the
genetic learning component of the hardware. Section
4 presents a case study of evolved structure of a
Finite State Machine and the experiments of
adaptation and reparation. Section 5 points the
conclusions of our experiments.

2. EVOLVABLE HARDWARE

There is a clear distinction between a conventional
hardware and an Evolvable Hardware. A designer can
begin to design a conventional hardware only after its
detailed specification is given. In this sense,
conventional hardware is a top-down approach.
However, Evolvable Hardware is applicable even
when no hardware specification is known before. Its
implementation is determined through a genetic
learning in a bottom-up way. This kind of hardware is
a combination of reconfigurable hardware devices
and genetic learning. Multiple hardware structures are
maintained in parallel and they are continuously
evaluated by genetic algorithms in order to create
better hardware structures.

PLDPLD
Evolution

Architecture bits Architecture bits

(Chromosome) (Evolved chromosome)

GA
operation

Download Download

1010 . . . 11 0110 . . . 10

Fig. 2. The basic idea of Evolvable Hardware.

The basic idea is as follows. In reconfigurable
hardware devices like PLDs and FPGAs, the logic
design is compiled into a binary bit string. By
changing the bits, arbitrary hardware structures can
be implemented instantly. The key idea is to regard
such a bit string as a chromosome of a genetical
algorithm. Through genetic learning, Evolvable
Hardware finds the best bit string and reconfigures
itself accordingly.

A PLD consists of logic cells and a fuse array (see
figure 1). The architecture of the PLD is determined
by architecture bits stored in an architecture bit
register. Each link of the fuse array corresponds to a
bit in the register.

The fuse array determines the interconnection
between the device inputs and the logic cell. It also
specifies the logic cell’s AND-term inputs. If a link
on a particular row of the fuse array is switched on,
which is indicated by a black dot in figure 1, then the
corresponding input signal is connected to the row. In
the architecture bits, these black and white dots are
represented by 1 and 0, respectively.

Consider the example shown in figure 1. The first
row indicates that x2 and x3 are connected by an

AND-term, which generates the minterm x x2 3⋅ .
Similarly, the second row generates x1 , and the third

row generates x x x1 3 4⋅ ⋅ . On the last row, no inputs
are connected by an AND-term, thus, the resultant
output is F x x x x x x1 2 3 1 1 3 4= ⋅ + + ⋅ ⋅ .

As mentioned above, both of the fuse array and the
functionality of the logic cell are represented in a
binary string. This binary string is regarded as a
chromosome of a genetic algorithm, and is down-
loaded onto a PLD, on and after the genetic learning.
In this way, the hardware structure is adaptively
searched by genetic algorithm (see figure 2).

Higuchi, et al. (1994) proposed an architecture based
on software reconfigurable devices (PLDs) and a
parallel genetic algorithm hardware.

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 1998 YEAR, ISSN 1221-454X

3. GENETIC LEARNING

The genotype of an evolved structure on PLD basis is
given by the bits for fuse array and bits for logic
cells. However, this genotype representation has
inherent limitations, since the fuse array bits are fully
included in the genotype, even in the case that only a
few bits are effective. This causes the increase of the
chromosome length, increasing execution time of the
algorithm.

Iba, et al. (1996) proposed a new method for
chromosome representation. Each chromosome is
represented by the architecture bits, which effectively
determine the hardware structure. For example, we
need only six bits for fuse array in figure 1, while 32
bits are required for initial genotype representation.
Because of this short chromosome, this method
known as Variable Length Chromosome Genetic
Algorithm (VGA) can increase the maximum
evolvable circuit size and establish an efficient
adaptive search.

The fitness function is determined depending on the
application , but it basically evaluates the corectness
of the output for the training data set.

In the case of fault-tolerant applications, Evolvable
Hardware works in parallel with the target circuit.
The I/O patterns of the target circuit are observed by
the Evolvable Hardware. While the target circuit is
working, the Evolvable Hardware evolves the circuit
by genetic algorithm. The fitness value is the number
of the correct outputs of the evolved circuit.

In the case of any unpredictable changes of the
environment, Evolvable Hardware can adapt himself
to these changes, through on-line genetic learning.
The adaptation result is configured into a new
hardware structure on the spot.

We have used the fundamental structure of a genetic
algorithm. The initial population of chromosomes is
constructed randomly. All these potential solutions
are evaluated using a fitness function. In our case,
fitness is the ratio between the number of the correct
values of the binary function and the number of all
possible values of the function.

The next step is selection and reproduction. For each
individual, a number of copies are made, proportional
to its fitness, while keeping the population size
constant. The least fit individuals are deleted. This is
the survival of the fittest part of the genetic algorithm.

The next step is crossover, where individuals are
chosen two at a time, at random, as parents. They are
converted into two new individuals, called offsprings,
by exchanging parts of their structure. Thus, each

offspring inherits a combination of features from both
parents. We have used in our experiments only one
point crossover.

The next step is mutation. An incremental change is
made to each member of the population, with a small
probability. After mutation is performed on an
individual, it no longer has just the combination of
features inherited from its two parents, but also
incorporates the additional change caused by
mutation. This ensures that the algorithm can explore
new features that may not yet be in the population. It
makes the entire search space reachable despite the
finite population size.

This completes the production of a new generation.
This process is repeated for several generations, and
the fittest gate permutation seen in the entire run is
output at the end.

We have taken a simple example with 4 inputs
functions and maximum 4 minterms for each
function. The number of columns in the fuse array is
8 (i.e. 4 inputs, where each input signal is divided
into 2 columns) and the number of rows is equal with
4, i.e. the maximum number of minterms. Therefore,
the number of fuse array links is 32, and we have
considered this number as the total length of the
chromosome. We have supposed the logic cell's
function to OR gate function, and so, the bits to set
the logic cell's function have been ignored.

Our genetic algorithm uses the population size of
100, each chromosome has 32 bits. One point
crossover is executed with a probability of 50% and
the mutation rate is 1%. A number of 10 worse
chromosomes are replaced each generation. The stop
criterion is the number of generations.

Evolvable Hardware is feasible in PLD structures like
GAL16V8 chips, for example. This chip consists of
an AND array and 8 logic cells configurable as OR
gate and register device through some special
configuration bits. The execution time is 10
nanoseconds, so the reconfiguration can be very fast.

4. EXPERIMENTS

We organized three experiments for the learning task
described before. The evolved circuit is a simple
synchronous sequential machine with 3 states and 2
inputs. The state diagram corresponding to this circuit
is represented in figure 3. The evolved circuit based
on a PLD structure like GAL16V8 is represented in
figure 4.

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 1998 YEAR, ISSN 1221-454X

Q Q1 2
x1x2

X - don't care

00 01

10

0X

1X

X0

0X X1

1X

Fig. 3. The state diagram of the evolved circuit.

x1 x2

D

CL

Q

D

CL

Q

CLK

Q1

Q2

F

F

1

2

Fig. 4. The evolved circuit.

Actually a circuit generating 2 binary functions is
evolved. However, this circuit is built from 2
independent circuits, each generating one output bit,
F1 and F2 . Therefore, the evolution of a circuit with
one output bit is repeated 2 times. Figure 5 shows the
result. The Y axis is the correct answer rate. If it
reaches 100%, then the hardware evolution succeeds.
The first circuit is successfully obtained at 12-th
generation and the second circuit at 32-th generation.

The same evolution, but with a significant less
number of chromosomes in population, is represented
in figure 6. We have used here only 20 chromosomes
in population, instead 100 chromosomes, like in the
previous case. We can see that the first circuit is
successfully obtained at 21-st generation, while the
second circuit is obtained at 68-th generation. These
experiments show that the evolution is faster in
populations with a larger number of chromosomes,
but the parallel hardware necessary for a large
population might be unacceptable. Thus, a
compromise between speed and complexity must be
found in this area.

Evolution may provide some non-minimal
expressions for boolean functions. For example, a
minimal expression of the first function is
F x Q x Q1 1 1 2 2= ⋅ + ⋅ , but another expression like

F x Q x Q x x Q Q1 1 1 2 2 1 2 1 2= ⋅ + ⋅ + ⋅ ⋅ ⋅ is possible as
a result of evolution. Actually, it's not a real problem,
because minimization is not necessary for PLD
implementations .

Fig. 5. Evolution with a population of 100
chromosomes

Fig. 6. Evolution with a population of 20
chromosomes

The second experiment was organized to confirm the
self-repair property of the Evolvable Hardware. Let's
consider the evolved circuit in figure 4 as the target
circuit, and another Evolvable Hardware in parallel
with the target circuit. The inputs of these two circuits
are connected together and the outputs are observed.
While the target circuit is working, the Evolvable
Hardware evolves the circuit by genetic algorithm.
When the evolution is over, the outputs of the two
circuits are equal, i.e. F F1 1= * , F F2 2= * , Q Q1 1= * ,

and Q Q2 2= * .

When a fault occurs in one of the circuits, one of the
above relations is not true and a new evolution
repairs the fault through reconfiguration. We have
supposed a "stuck-at 0" fault in the AND array of the
PLD. Figure 7 shows the new circuit obtained
through reconfiguration. The evolution is based on a
genetic algorithm with the same parameters as shown
before (see figure 8).

The third experiment was organized to confirm
whether Evolvable Hardware can adapt to
environmental change or not. Let's suppose that our
circuit commands a motor with two control bits,

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI
FASCICLE III, 1998 YEAR, ISSN 1221-454X

x1 x2

D

CL

Q

D

CL

Q

CLK

Q1

Q2

F

F

1

2
stuck-at 0

Fig. 7. Self-repair in Evolvable Hardware.

Fig. 8. Self-repair of the circuit through evolution.

according with the next rule: Q Q1 2 00= for stop,
Q Q1 2 01= for half-speed, and Q Q1 2 10= for full-
speed motion. We examined the hardware
adaptability in a situation where the motor become
unable to operate at full speed any more and half of
speed is the only choice. This environmental change
corresponds to learning two new binary functions
according with this new behaviour. Figure 9 shows
the new hardware configuration and figure 10 shows
how the hardware evolution goes after the re-
adaptation starts.

We have organized this experiment starting first with
the population of chromosomes which already
learned the original circuit, and then with an initial
population generated randomly, but we could not find
that there exist significant differences between these
two cases.

5. CONCLUSIONS

In this paper, we have shown that the advantages of
using Evolvable Hardware are huge, due to the
attributes of self-repair and self-adaptation. Fault
tolerant and flexible design is realized because
Evolvable Hardware can change its own structure in
the case of hardware error or environmental change,
utilizing its on-line adaptation capability.

x1 x2

D

CL

Q

D

CL

Q

CLK

Q1

Q2

F

F

1

2

Fig. 9. Self-adaptation in Evolvable Hardware.

Fig. 10. Self-adaptation of the circuit

The execution speed of the evolved system will be
extremely fast, because the result of adaptation is the
hardware structure itself (Higuchi, et al., 1994).

We have shown that Evolvable Hardware can
implement Finite States Machines. Thus, exists the
possibility that all microprocessor's control programs
could be replaced with Evolvable Hardware.

REFERENCES

Higuchi, T., H. Iba and B. Manderick (1994).
Applying Evolvable Hardware to Autonomous
Agents. In: Proc. of the Third Conf. on Parallel
Problem Solving from Nature, Jerusalem,
Israel, October 1994, 524-533

Iba, H., M. Iwata and T. Higuchi (1996). Machine
Learning Approach to Gate-Level Evolvable
Hardware. In: Proc. of the First International
Conference on Evolvable Systems, ICES’96,
Tsukuba, Japan, October 1996, 327-343

Michalewicz, Z. (1996). Genetic Algorithms+Data
Structures = Evolution Programs, Springer-
Verlag, Berlin-Heidelberg-New York

Zebulum, R. S., M. A. Pacheco and M. Vellasco
(1996). Evolvable Systems in Hardware Design:
Taxonomy, Survey and Applications. In: Proc.
of the First International Conference on
Evolvable Systems, ICES’96, Tsukuba, Japan,
October 1996, 344-357

