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Abstract: This paper deals with a neural network based GPC structure for a bioprocess 
control. Comparing to IMC structure, this method offers two advantages: the neural 
inverting operation of the process model is eliminated and there are various 
possibilities to adjust the control law properties. The GPC method is applied to a 
biomass production process and to an enzymatic production process (lipase 
producing). In both cases many simulation results are presented which illustrate the 
validity of the method. 
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1. INTRODUCTION 
 
The complexity of the bioprocesses makes their 
control problem very difficult. The usual 
modeling procedures, based on kinetic 
enzymatic schemes, lead to non-linear state 
models, with a large number of parameters. 
Moreover, the state variables that characterize 
the proper biosynthesis process are not 
accessible to the direct measurement. In the 
basic configuration, the bioreactor has control 
loops only for the physical and chemical 
parameters of the culture environment 
(temperature, stirring, aeration, pH, etc.). This 
fact has determined the development of some 
specific techniques to estimate the parameters 
and for the state observers synthesis (Bastin et 
al., 1990). Since the bioprocesses have 
frequently a variant character, the techniques 
mentioned above are used in the context of the 
linearizing adaptive control methods (Bastin et 
al., 1990)   

 
The capacity of the neural networks (NN) for 
the complex input/output models identification 
has stimulated their usage in the bioreactors 
control structures. One of the basic approaches, 
concerning the neural techniques in the 
bioprocesses control, is Internal Model Control 
(IMC) Framework (Garcia et al., 1982). Neural 
network model - based IMC structure involves 
the usage of two neural networks, trained for the 
determination of both direct and inverse models. 
Assuming the direct model is ideal, the 
comparison of its output to the one of the 
process allows the disturbance reconstruction. 
The inverse model is the controller, performing 
the functions of reference tracking and 
disturbance rejection.  
 
A large class of neural network model - based 
control structures could be framed in the domain 
of Model-Based Predictive Control (MBPC) (De 
Keyser, 1991; Camacho et al., 1999). The 



present paper deals with a biosynthesis process 
control, using the Generalized Predictive 
Control (GPC) structure (Clarke et al., 1989), 
which is part of MBPC approach. Comparing to 
the IMC approach, the main arguments that 
justify the usage of GPC structure, in the 
framework of the biosynthesis processes neural 
control, are given as follows:  
 
1. The neural inverting operation of the 

process model, needed for the controller 
implementation, is eliminated. As it is well 
known, the inverse neural model training is 
always more difficult than the one of the 
direct model (Bhat et al., 1990). In the case 
of the biosynthesis processes, where the 
model complexity is high, the training of the 
inverse model (non-causative) could involve 
difficulties and risks, especially in adaptive 
context. This is the reason why in the IMC, 
using neural networks approach, hybrid 
models are proposed. They fructify some a 
priori information regarding the model. 
Thus the neural identification operates with 
a "gray box" instead of a "black box" 
(Aoyama et al., 1995). This solution reduces 
in a certain range the difficulties of the 
inverse model training, without their 
elimination, whereas GPC approach 
eliminates the inverse model.  

2. GPC offers various possibilities for the 
control law adjustment by means of the 
following parameters: the prediction 
horizon, the control horizon, the weights of 
the error and the command. The control 
feasibility requirements make these 
instruments very useful for the control law 
adjustment.  

 
The paper analyses the properties of the neural 
network based GPC structure for a bioprocess 
control in two variants:  
 
1. using continuous command  
2. using discrete command.  
 
The paper also illustrates some results regarding 
the usage of this structure to the lipase 
biosynthesis process optimization.  
 
The structure of the paper is as it follows: the 
next section contains an introduction in GPC 
structure. The third section presents some basic 
results referring to the neural network model-
based control in the GPC structure, for a 
biotechnological process, such as: the reference 

tracking, the disturbance rejection, the 
modification of the control law properties by 
adjusting the parameters which appear in the 
performance criterion. The fourth section deals 
with the same problems from the previous 
section, using the GPC structure with discrete 
command. Section 5 describes the performances 
of GPC approach in a case study concerning the 
optimization of the lipase biosynthesis process. 
A summary and conclusions are given in the 
final section.    
 
 

2. GENERALIZED PREDICTIVE 
CONTROL 

 
From the variety of MBPC strategies, the most 
spread is GPC algorithm, illustrated in Figure 1.  
 

 
 
Fig. 1. GPC structure 
 
Let us consider t the discrete current time in 
GPC procedure. The command variation at the 
current step ∆u(t) is deduced from the condition 
of the criterion minimization: 
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where y(t+k/t) is k-step ahead prediction of the 
system output on data up to time t; N1 and N2 - 
the minimum and maximum prediction 
horizons; Nu - the control horizon; w(t+k) - the 
future setpoint; δ(k) and λ(k) - the weighting 
coefficients of the errors and of the commands, 
respectively. The internal model, assumed to be 
perfect, is used to determine the predictions - 
y(t+k/t). At every step of the GPC procedure, 
the unitary step response of the internal model in 
zero initial conditions is determined. For this, it 
is necessary to admit that the model could be 
linearized around the current working point. The 
step response identification involves the 
following operations: 



- the previous command is kept constant and 
the free response is determined: yfree(t+k/t), 
k=1,…,N2; 

- the step response of the model is 
determined: y(t+k/t), k=1,…,N2. 
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where gi represent the step response coefficients 
in zero initial conditions. 
 
Replacing consecutively in relation (4) k  with 
(1,2,…,N2) the values g1,g2,…,gN2 are obtained. 
Within the prediction horizon [N1,N2], the 
linearized model can be written as it follows: 
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Using the model (5) in equation (1), a quadratic 
form for the performance criterion, with respect 
to U, is obtained: 
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From the condition of the criterion 
minimization, the following control law is 
obtained: 
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Only the first component of the vector U, 
∆u(t/t)≡∆u(t), is applied. Shifting to the future 
the prediction and control horizons, the next step 
of the algorithm is prepared. Then, the algorithm 
operations are repeated.  
 
 

3. STABILIZATION AND TRACKING 
REGIME OF A BIOREACTOR 

CONTROLLED BY  GPC ALGORITHM 
 
3.1 The neural model of the bioprocess 
 
For testing the GPC algorithm, the bioprocess 
presented in (Aoyama et al., 1995) has been 
considered. In the paper mentioned above the 
performances of the IMC procedure was 
determined. This alternative has permitted to 
draw some comparative conclusions regarding 
the two control procedures. The process takes 
place in a continuous stirred bioreactor and it is 
described by the following equations: 
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where 
 
X = cell mass concentration (5.9956 g/l at the 

steady-state); 
P = product concentration (19.1267 g/l at the 

steady-state); 
S = substrate concentration in the culture 

(5.0109 g/l at the steady-state); 
Sf = feed substrate concentration in the culture 

(20.0 g/l at the steady-state); 
D = dilution rate (0.202 l/h at the steady-state); 
µ = specific growth rate [l/h] given by (18), 

which includes the inhibition due to the 
substrate and the reaction product; 

YX/S = cell mass yield (0.4 g/g); 
α = kinetic parameter (2.2 g/g); 
β = kinetic parameter (0.2 l/h); 
µmax = maximum specific growth rate (0.48 l/h); 
Pm = product saturation constant (50 g/l); 
Km = substrate saturation constant (1.2 g/l); 
Ki = substrate inhibition constant (22 g/l). 
 
The non-linear behavior of the process clearly 
results from its static characteristic presented in 
Figure 2. 
 

 
 
Fig. 2. The static characteristic of the process 
 
A structure with three layers has been proposed 
as internal neural model: four input neurons, 
seven sigmoidal neurons in the hidden layer and 
one linear neuron as output layer (Figure 3). The 
neural network output is the biomass increment. 
For the neural network training both the 
transient and the quasi - steady state data were 
used. The transient data have been obtained by 
integrating the differential equations (15) - (17), 
considering the randomly varying dilution rate 
within range ±50% around the steady-state value 
(Figure 4). The quasi - steady state data has been 
obtained by integrating equations (15) - (17) 
considering different values of the dilution rate 
D (Figure 5). 
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Fig. 3: The neural network structure 
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Fig. 4. Transient data used for neural network 

training 
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Fig. 5. Steady - state data used for neural 

network training 
  
The validation of the neural network training has 
been made with test data, which were not used 
during the training (Figure 6). We can see that 
the network leads to a very good approximation, 
the difference between the process output and 
the model being almost imperceptible. 
 
The testing of the process described by the 
equations (15)-(17) and of the neural model with 



a multi-step sequence shows that the 
approximation is very good for the biomass 
values within the range [3.5-8] g/l (Figure 7). 
For values of the biomass that exceed the 
domain of the training set (e.g. less than 3.5 g/l), 
the error of the neural network model output 
becomes larger (Figure 7). 
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Fig. 6. The validation of the neural network 
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Fig. 7. The process and model response when 

the input is a multi-step sequence 
 
3.2 The performances of the closed-loop system 
 
The control objective is to maximize the output 
rate of biomass per unit volume of culture. To 
reach the optimum, the controller has to keep the 
process in a functioning point (D, X), 
determined from the static characteristic (Figure 
2). Consequently, the performances of the 
closed-loop system were studied through 
variations around the chosen steady functioning 
point. 
 
A step setpoint from 6 to 5 l/h has been applied 
to the system presented in Figure 1. For the 
choice of the step value, the following issues 
were taking into account: 
- the working point has to lie in the range 

where the neural model has been trained;  

- the command D should not exceed the 
admissible interval.  

 
Further on, the following parameters of the 
predictive controller were successively varied: 
1. The prediction horizon (N2) (the other 

parameters were kept constant to the values: 
Nu=1, λ=10 and δ=1. In Figure 8 it can be 
seen that the process output reaches the 
setpoint more slowly and the command has 
smaller variations as the prediction horizon 
increases. 

2. The control horizon (Nu) (the other 
parameters were kept constant to the values: 
N2=8, λ=10 and δ=1. Figure 9 shows that 
the increasing of the control horizon value 
leads to the increasing of the stabilization 
speed of the process output to the setpoint.  

3. The penalty factor of the command 
variations (λ-parameter, λ(k)=λ); the other 
parameters were kept constant to the values: 
N2=4, Nu=1 and δ=1 - Figure 10. 

4. The penalty factor of the future errors, 
which interfere in the criterion minimization 
(δ-parameter, δ(k)=δ); the other parameters 
were kept constant to the values: N2=4, 
Nu=1 and λ=10 - Figure 11.  
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Fig. 8. The influence of N2-parameter on the 

process (a -output and b - command) 
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Fig. 9. The influence of Nu-parameter on the 

process (a - output and b - command) 
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Fig. 10. The influence of λ-parameter on the 

process (a - output and b - command) 
 
Figures 10 and 11 show the influence of λ and δ 
- parameters on the process output: as λ 

increases or δ decreases, the overshot and the 
transient time become larger. 
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Fig. 11. The influence of δ-parameter on the 

process (a - output and b - command) 
 
3.3 Tracking performances of the closed-loop 
system 
 
The tracking properties of the system presented 
in Figure 1 were tested applying a quasi-periodic 
signal as setpoint. Taking into account the long 
duration of the considered bioprocess, the test 
signal frequency was chosen small enough so 
that the predictive algorithm could track the 
setpoint variations (Figure 12).  
 
The system output magnitude varies within the 
range [2-8] g/l. These values are outside the 
domain where the neural model has a good 
behavior. The range [2-8] g/l was chosen to 
represent both zones: a good training zone and a 
poor training one. The increasing of the biomass 
concentration over 8 g/l leads to unfeasible 
values for the command (less than 0). When the 
setpoint values are within the range [2-3] g/l, 
significant errors appear between the setpoint 
and the process output. This is due to the fact 
that within this range, the neural model does not 
approximate accurately enough the process 
output, as indicated in Figure 7. 
 



0 10 20 30 40 50 60
2

3

4

5

6

7

8

Time (h)

B
io

m
as

s 
(g

/l)

Process output
Setpoint

 (a) 

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (h)

D
ilu

tio
n 

ra
te

 (l
/h

)

 (b) 
 
Fig. 12. The tracking behavior of the system  

(a -output and b - command) 
 
3.4 Disturbances rejection by the closed-loop 
system 
 
Two kind of disturbances were considered, 
affecting the feed substrate concentration (Sf) 
and the specific growth rate (µ): 
 
1. A pseudo-random disturbance has been 

added to Sf, ranging within ±25% interval 
(Figure 13). 
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Fig. 13. Open-loop and closed-loop system 

behavior when Sf is disturbed 
 
2. After 2.5 hours, the value of µ-parameter 

was increased with 50% (Figure 14). 
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Fig. 14: The system behavior when µ-parameter 

was modified 
 
In both cases the control system rejected very 
well the disturbances. 
 

4. GPC STRUCTURE WITH DISCRETE 
COMMAND 

 
In many cases, the actuating equipment of the 
commands of a bioreactor can not track 
accurately the command u(t) of the controller. 
Moreover, this equipment is often conceived to 
modify in steps the dilution rate so that the 
variable D(t) can take only a reduced number of 
discrete values. In this case, the command 
variation ∆u(t) is found out from the criterion 
(1) minimization, searching through all the 
possible combinations of the discrete 
commands, on the control horizon - Nu. 
Obviously, for large values of the Nu parameter, 
the computing time necessary to determine the 
optimal command could become prohibitive. 
For the bioprocess described in the previous 
section, the dilution rate was considered to take 
five possible values: {0; 0.05; 0.1; 0.15; 0.2}. 
For Nu=1, in Figures 15, 16 and 17 the closed 
loop performances of the system, when the 
prediction horizon (N2) takes the respective 
values 8, 12 and 16, are illustrated. Figure 17 
shows that the performances are satisfactory, 
even when using a reduced number of command 
commutations. 
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Fig. 15: The process behavior for N2=8 (a - 
output, b - discrete command) 
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Fig. 16: The process behavior for N2=12 (a - 
output, b - discrete command) 
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Fig. 17: The process behavior for N2=16 (a - 
output, b - discrete command) 

 
 

5. GPC OF LIPASE BIOSYNTHESIS 
PROCESS 

 
The lipase biosynthesis process is a very 
complex one, due to the simultaneous existence 
of more culture phases: liquid phase, organic 
phase, cellular phase and gaseous phase. The 
model describing this behavior is highly non-
linear and consists in the following differential 
equations (Selisteanu, 1999): 
 

DXS +⋅−= η1
&     (19) 

 
)( 22 SYS +⋅−= µη&    (20) 

 
XX ⋅= µ&     (21) 

 

inexpin LL ⋅−−= µνν&    (22) 
 

XL exex ⋅=ν&     (23) 
 
where 
 
X = biomass concentration [g/l]; 
S1, S2 = extracellular and intracellular substrate 

concentration [g/l]; 
Lex,  Lin =  extracellular and intracellular lipase 

concentration [g/l]; 
η = specific absorption rate of the substrate [h-1]; 
µ = specific growth rate of the biomass [h-1]; 
νp = internal lipase production rate [h-1];  
νex = lipase exhaust rate [h-1]. 
 
It has been considered the Monod forme for η, µ 
and νex, and Haldane forme, multiplied by µ, for 
νp: 
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where the parameters' values are: 
 η*=0.21h-1, KM1=0.11g/l, µ*=0.25h-1, 
KM2=0.25g/l, νp

*=123u/mg, Kp=0.26g/g, 
Ki=22.2g/g, νex

*=4.09h-1 , Ke x=19.5u/mg, 
Y=1.16g/g.  
 
The model is only valid for the biomass and 
substrate concentration values within the range 
[0-8] g/l. The goal of the process control is to 
maximize the final lipase production.  
 
The maximum lipase production could be 
obtained in two ways (Montesinos et al., 1993): 
- keeping the extracellular substrate (S1) to a 

certain level (Selisteanu, 1999); 
- keeping the S1/X ratio to a constant value, 

which depends on the model parameters. 
For the above mentioned values of the 
process parameters, the optimal value of the 
S1/X ratio is 0.15. 

 
The second variant has been adopted, where 
GPC algorithm controls the S1/X ratio. The 
control strategy is illustrated in Figure 18 (N2=8, 
Nu=2, λ=0.5 and δ=1). At the beginning, the 
process works in open loop, with D=0. The 
biomass in the bioreactor growths on the behalf 
of the initial substrate. When S1/X becomes 
smaller then 0.15, the system switches to closed-
loop control. The controller becomes active and 
controls the S1/X ratio, to the setpoint value 0.15. 
After 22 hours, when X increases over 8 g/l, the 
process is stopped. 
 
In Figure 18 one can observe the two 
functioning regimes of the bioreactor: 
- open-loop (0<t<14h); 
- closed-loop (14h<t<22h). In this case, the 

system works in tracking regime as the 
output variable X(t) tracks the variable 
setpoint X*(t)=S1(t)/0.15. 
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Fig. 18. a - biomass and S1/X ratio evolution, b - 

the lipase and the command evolution 
 
 

6. CONCLUSIONS 
 
GPC structure offers good results in both cases 
presented in the paper: a biomass production 
process and a lipase production one. Comparing 
to IMC structure, this method offers two 
advantages: the neural inverting operation of the 
process model is eliminated and there are 
various possibilities to adjust the control law 
properties, in order to satisfy the requirements of 
the control feasibility. 
 
GPC structure with discrete command leads also 
to good results. In this case a searching 
procedure for the optimal discrete command is 
used. This procedure could lead to a large 
computing time, so the control horizon should 
be limited (Nu ≤ 2). 
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