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Abstract— The paper deals with the potential of the artificial
neural networks in the field of tribology. Their properties of
learning and nonlinear behavior make them useful to model complex
nonlinear processes, better than the analytical methods. The neural
structures, considered appropriate for such models, are presented.
The applications found in the referenced papers mainly consist of
prediction and classification. They present some common points,
specific to the field: wear processes and particles, friction
parameters, faults in mechanical structures. The results obtained by
the authors, in their interdisciplinary research are described,
proving that neural networks are an useful tool during the design
stage as well as the running stage.
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I.  INTRODUCTION

In the field of mechanical engineering - in general and of
tribology — in particular case, very complex and highly
nonlinear phenomena are involved. This is the reason why
analytical models are difficult, even impossible to obtain.
However, the improvement of performances of mechanical
equipment requires accurate modeling and prediction of the
friction and wear processes. Artificial Neural Networks
(ANN) are good candidates to such models, due to their
capabilities of nonlinear behavior, learning from
experimental data and generalization.

Two main functions of ANN are useful in tribological
applications:

— the continuous approximation of a multivariable
function, used for modeling of processes;

— classification, that is a discrete approximation of
functions, used for recognition of the operation conditions of
machinery.

The former function is usually obtainable by feed-forward
NN, called Multi Layer Perceptron (MLP). The latter may be
obtained using self-organizing NN, as Kohonen and Adaptive
Resonance Theory (ART). MLP equally may be used for
classification if adding a supplementary discriminator of the
output values. Both functions are already applied in the field
of tribology and machinery and presented in several recent
papers.

This work aims at evaluating the usefulness of ANN in such
applications, as it is reflected in above mentioned papers. It
contains a first chapter as introduction, a second chapter dedicated
to the main ANN structures, chapters three and four dealing,
respectively, with modeling and classification applications and a
conclusions part.

I1. DESCRIPTION OF ARTIFICIAL NEURAL
NETWORK STRUCTURES

I1.1. Multi Layer Perceptron

Figure 1 shows an example of a MLP type neural network.
Its basic structure is composed of layers, namely the input
layer, hidden layers and output layer. The input layer accepts
data from the external world, the output layer generates
outputs to the external world. There may be one or more
hidden layers. Each layer consists of a number of nodes
(neurons, cells, processing elements). As shown in figure 1,
each processing element may have several input paths but
only one output. The inputs of a neuron may come from the
external world (in the input layer) or from the outputs of
other neurons (in the hidden and output layer). Each neuron
sums its input signals, modified by the interconnection
weights. The sum, modified by an activation function
(frequently a sigmoidal function), is the output of the neuron.

Fig. 1 Example of a neural network [1]

The information propagates from the input layer to the
output layer, through connections existing only between
elements in adjacent layers. In order to prevent saturation of
the activation function the data used for train the NN are
generally normalized.

The learning procedure starts with computing of each
output Oy, for a specified input vector, X. Then the error
between the computed output Oy and the desired one, dy is
used to modify the weights of the neurons in order to
decrease this error. The procedure is repeatedly applied for all
input vector sets, in order to minimize the global
approximation error of the network. This is the back-
propagation learning algorithm. It has many versions, aiming
at minimizing the learning time and at a good convergence.



I1.2 Kohonen self-organizing neural network

The network consists of output units, typically arranged in
a two-dimensional plane, with weights between each unit and
input units. When an input vector is fed to the network, only
one output unit, which has the best-matching weight. i.e. the
weight vector is the closest to the input vector, is selected as a
‘'winner'. After learning, units in the network have modified
weights such that neighboring units have similar weight
vectors. Hence similar inputs are linked with winner units
that are located close to each other, while winner units for
different inputs are located far away in the network. Thus the
feature map is created and inputs to the network are
automatically classified on the map. The advantage of the
feature map is that the weight of each output unit directly
shows a corresponding input vector itself.

The main property of the Kohonen network is the unsu-
pervised learning. That permits to divide the input vectors set
in clusters without prior knowledge about their similarities.

11.3. Adaptive Resonance Theory Network (ART)

The ART network is shown schematically in figure 2. It
has two layers: the first is the input/comparison layer and the
second is the output/recognition layer. These layers are
connected together with extensive use of feedback from the
output layer to the input layer along with the feed forward
connections. Associated with each connection, the ART
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Fig. 2 The configuration of ART network [18]

network has feed forward weights (w;s) from the input layer
to the output layer and feed back weights (tjs), from the
output layer to the input layer. Between the input and output
layers there is also a reset circuit which is actually
responsible for comparing the evaluated Euclidean distance
(making use of the current inputs and the most recent
weights) to a vigilance threshold that determines whether the
pattern under consideration pertains to one of the already
generated clusters or a new cluster must be created.

Although the structure is different with respect to the
Kohonen network, their main functions are similar:
unsupervised clustering of the input space, based on
experimental data. They are useful in pattern classification
applications.

I1l. MODELING AND PREDICTION

The MLP network is suitable for modeling of the
processes. It offers a continuous approximation of a
multivariable function, that is not analytically obtainable, but
it is properly described by the experimental data set. Usually,
the purpose of the model is the one-step ahead prediction, i.e.
to determine the value of the output function at the moment
t+1, knowing the present and the previous values of the
output and inputs (t is integer). This ability is used in
applications such as tool wear or lubricant wear prediction.
There are also applications where the current time is not one
of the variables, such as the model of the pressure distribution
in a rectangular gas bearing.

The paper [1] presents an ANN that models a simple
mechanical system involving friction and wear, according to
three standard experiments: rub-shoe, pin-on-disk and four
balls models. The input variables are: speed, load, viscosity,
sliding distance, friction coefficient and temperature. The
output functions are the wear volume (um?®) and the wear rate
(m*/m).

The purpose of this model is to predict the life time of the
friction elements for given operating conditions (even
without carrying on a real experiment), or to perform
accelerated-life testing, on more complex mechanical
systems. A feed-forward NN is trained on the basis of
experimental data to output the current wear volume or the
current wear rate. On different data set the output yielded by
the NN is compared to the recorded one, in order to validate
the model (fig. 3).
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Fig. 3 Comparison between actual and predicted data [3]



The focus of this work was the evaluation of the
performance of different network dimensions [1], including
recurrent network that filters the input data. As a general
result the models prove to be good approximations of the
wear volume or rate.

Papers [2] and [3] present other related results of the same
research group.

A similar problem is solved in [4]. The prediction of the
linear wear (mm) is performed by a MLP network, the
considered inputs being: load, velocity, relative humidity and
sliding distance.

The papers [5], [6], [7] proposed by another group of
authors, deal with the same problem of the wear volume
prediction, but in fretting experiments. The main changes
concern the dimension of the network, including the number
of the relevant inputs (fig. 4). Two interesting aspects pre-
sented in the paper [7] have to be mentioned: the friction
coefficient is no longer considered as fixed input with
previously known value, but as a variable, which has to be
modeled by the network. The authors consider that studying
the relevance of various parameters of the tribological
behavior of the system will help to understand the relation
between tribological proprieties and material parameters in
fibber composites. This is a challenging start to using NN for
knowledge extraction.

The authors of the paper [8] make use of a MLP to model
the tool wear in a face milling process. The input vector
contains forces, feed rate, eccentricity and the work piece
geometry. The output is the average flank wear. Different
number of neurons in the hidden layer are tested but the
results seem to be very close one to each other (very small
error). A specific element for the cutting process is that the

cutting force itself evolves along with the tool wear. Not only
the cutting force influences the tool wear but also an inverse
influence exists.

The influence of the cutting force on the tool is separately
evaluated outside the network. In order to validate the neural
model, its output is compared to previously identified
analytical models; the neural model proves to be better.

The authors of paper [9] apply the same type of ANN to
model the turning process. The input vector contains three
forces, cutting velocity and feed (mm/rev). The output is the
average flank wear of the cutting tool. The model is closed to
the real process, excepting for large feed rates, when the error
increases due to the unstable associated phenomena.

In paper [10] a MLP is used to predict some parameters of
the surface topography, after a specified wear time: RMS,
skewness and kurtosis. These parameters further specify the
statistical properties of the worn surface, which is subject of a
surface reconstruction.

The articles [11] and [12] deal with the estimation of the
tool wear in micro-machining. Paper [11] concerns analytical
estimations of the cutting forces. A very interesting
application, based on the neural model, is developed in the
paper [12]. The authors propose a periodic inspection device,
to evaluate the tool condition, in order to preserve the quality
of the manufacturing. The inspection is executed as it
follows: at the specified sampling periods, the tool moves
from the workpiece to a test piece and cuts a slot, then comes
back to the workpiece (fig. 5). During the test, the cutting
forces are measured and they become input data to the neural
model previously learned. The output of the network (Neural-
Network-based Periodic Tool Inspector-N?PTI) is the
estimation of the tool wear. It permits to decide when to bring
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Fig. 5 Operation of the N*PTI [12]

a new tool, being in a better condition. This is a typical
diagnose application .

An original contribution of the authors is the comparison
between more variants of network implementation.
Concerning the structure, they used the classical MLP, with
backpropagation training rule, as well as a probabilistic
neural network (PNN). This kind of network (described in
[12]) has four layers: input, pattern, summation and output.
One neuron is assigned to the pattern layer for each training
case. After training, pattern and summation layer neurons
create the output. For each class there is one summation
neuron. Training is very fast; however, the size of the
network depends on the number of training cases. If there are
many training cases, a large network will be established. In
the paper [12] the basic version of PNN is used, having a
single scaling parameter. The authors compare the advantages
of the MLP to the PNN. They establish, based on
experimental data, that backpropagation learning is 10 times
longer than the training of PNN, but the average estimation
error is 2 to 5 times better. Another contribution of the
authors is the comparison between three encoding methods,
that is the selection of the parameters fed to the network
input. The concerned methods are:

- force-variation-based encoding (the inputs are the
differences between the maximum and minimum values of
the forces, in each period);

- segmental-average-based encoding (10 samples per period
are presented to the network, for each cutting force);

- wavelet-transformation-based encoding (16 normalized
parameters, provided by the wavelet transformation, are
presented to the network).

The study of the authors found the wavelet transformation
as better estimating the forces and the wear, but requiring
more time and costly resources. At the other end, the force-
variation-based encoding is simply to implement, but
provides the worst estimate.

Two other papers deal with neural models, having to
predict variables similar to wear. Paper [13] presents an
application concerning the degradation of the physical
properties of the lubrication oil, during its lifetime. Properties
such as viscosity, flash point, water content, insoluble rating,
are sampled during the life of the oil. The MLP network is
trained to associate the age of the oil (as output) to its
properties (inputs). The result is the ability of the network to
predict the moment when each property of the oil reaches a
certain value, considered unacceptable (called by the authors
the "rejection time").

Paper [14] presents a neural network approach to
modeling the abrasive flow machining process. This is a
manufacturing process, involving the same phenomena and
variables as those presented so far (for typical wear
processes). Consequently, the models are similar. The authors
trained a MLP to model the material removal rate and the
quality of the obtained surface (surface finish). The four
inputs are the flow speed, the abrasive concentration, the
abrasive mesh size and the number of abrasive cycles. The
integral of the material removal rate provides the material
loss, so the effects may be predicted on-line, in order to
control the abrasive flow machining process. The idea of
using the model for on-line control is important for
fabrication processes, that need good prediction of the critical
parameters or variables. The same network may be used to
study the possible effects of the process, prior to performing



the real experiment. The validation of the neural model
proved that better results are obtained, with respect to
previously identified multivariable regression models.

Finally, a neural model application that does not imply
prediction as function of time, is contained in paper [15]. The
studied process is the pressure distribution in a rectangular
gas bearing. The inputs of the network are: a dimensionless
normalized distance (along the width of the bearing), the
supply pressure, the gap width between the two plates and a
form factor of the plates. The first two variables are more
relevant for the pressure value (correlation coefficient 0.8)
than the last two (correlation coefficient 0.05). The same
network models the load-carrying capacity of the gas bearing,
more accurately than the theoretical model derived by Kassab
from the Navier-Stokes model. This is due to the highly
nonlinearity of the process, difficult to catch in a simple
analytical model.

VI. RECOGNITION OF FAULTS IN BEARINGS,
MACHINERY AND IN MATERIAL STRUCTURE

Classification is the oldest application of the neural
networks. This ability is useful in a mechanical environment,
mainly to recognize the faults, as part of a diagnose effort. As
presented in chapter I1, the networks containing neurons with
threshold activation function in the output layer are suitable
for classification problems. However, linear or sigmoidal
activation functions are also suitable for this purpose, if the
output value is considered as a probability density function,
subject of a further threshold discrimination. The training of
the network may be supervised or unsupervised (clustering).
As a consequence, both MLP and self-organizing maps may
be used in a classification problem.

Paper [16] presents the ability of a Kohonen network to
classify 4 types of bearing faults and their combinations.
They are: outer bearing race defect, inner bearing race defect,
ball defect and train defect. The source of information is the
vibration transducer. At each sampling moment, a narrow
horizon Fourier analysis provides the spectral components,
that are fed as inputs of the network. This one recognizes the
bearing vibration signatures. The training is supervised,
requiring short time.

Paper [17] introduces an application of MLP to fault
classification of a rotor-bearing system. The inputs still are
spectral components of the vibration signals, whereas the
meaning of the outputs of the MLP is that of probability
density function of the fault signatures. The outputs are used
to discriminate four faults (rotor with mass unbalance, rotor
with bearing cap loose, rotor with misalignment and play in
spider coupling). The network does not offer a quantification
of the fault, once it is recognized, but manages to recognize
even combinations of faults. The authors mention that the
influence of the training parameters (in a backpropagation
procedure) on the classification abilities have to be
investigated further.

Paper [18] contains a very complex and rigorous analysis
of the classification of faults, localized in ball bearings. It
uses both MLP and self organizing network (ART2) to
recognize two main faults. The process information, provided
by piezo-electric accelerometers, is subject of the Fourier
analysis, that computes the spectrum components. These are
then compressed in 8 significant descriptors, fed as inputs of
the network. The meaning of the output, normalized between
0.1 and 0.9, is that of a scalar description of the possible
defects of the bearing. The value 0.1 corresponds to a normal
bearing, 0.6 to a ball defect and 0.9 to an outer race defect.
The MLP is trained in a supervised procedure, whereas the
ART network performs a clustering process. Both networks
performed a 100% reliable recognition of the defect bearings
(on the presented data sets). MLP distinguished the possible
states of the defect bearings, for diagnose purposes, with a
rate of success of 95%. The ART2 network was less accurate
in recognizing different defects, but it was 100 times faster in
training.

The last three papers have a common element: they deal
with the classification of the wear conditions. Paper [19]
indicates a MLP network as a proper classifier of the sliding
conditions, in a pin-on-disk sliding experiment. The
information considered relevant is the shape of the wear
particles, studied at the microscope and compressed in 4
descriptors that are the network inputs. The 5 outputs of the
network are normalized (0 to 1). Three of them represent the
type of lubricant, whereas the remaining two represent the
low- or high-load conditions of the process. After a
supervised training, the network is able to recognize the
mentioned sliding conditions. In order to make use of image
information (copying the human abilities, of image
processing and pattern recognition), the same paper proposes
a self-organizing network to classify the surface images. The
inputs are two textural parameters, extracted from the image
of the wear particles (rather distinct to the worn surfaces than
similar). After the unsupervised training, a Kohonen network
is able to recognize the above mentioned sliding conditions.

Paper [20] also deals with the wear debris classification, in
order to detect the phase of the wear process of the lubricated
sliding surfaces. The shape of the particles, studied by
microscopy, are described by Fourier descriptors, compressed
in 16 histogram parameters, fed as inputs to the MLP
network. The single output of the network is able to point to
the wear stage (initial or final), by classifying the shape of the
wear debris.

The papers [21] and [22] present MLP networks that
classify wear particles, in terms of wear mode. The authors
created a powerful software for managing the classification
possibilities of the networks. The inputs are Fourier
descriptors in one example, to classify the shape of the
particles, or elements of the co-occurrence matrix of the gray
image (the texture), in other example, to discriminate the
worn surfaces in "smooth" and "rough". Other examples of
MLP networks that classify wear particles, based on image
analysis and Fourier descriptors, appear in paper [23].



V. CONCLUSIONS

The purpose of this study was to assess the potential of
using neural networks to predict the performance and life of
mechanical systems. The mentioned papers, as well as many
others, not listed here, succeeded to model tribological
processes, making use of ANN. In general, their conclusions
indicate ANN as a good modeling method, due to the
learning, generalization and nonlinear behavior properties.

The main functions performed by the ANNSs are prediction
(model) and classification. The purpose of the prediction may
be the diagnose (prediction of the lifetime), accelerated life-
time testing, on-line control of manufacturing processes that
involve wear and prediction of the main properties of the
mechanical systems, during the conceptual design stage. The
classification is useful for diagnose purposes: recognition of
the conditions of operation and recognition of the faults.
Usually, the result will have a cost- and time-saving effect.
Different technologies, variables and sources of information
are subject of the modeling process. Some of the ANN inputs
require more previous processing, like Fourier analysis,
filtering and image processing.

The most popular ANNs are MLP - for prediction and
classification, and self-organizing maps - Kohonen, ART, for
classification. Their properties and the diversity of the
difficult mechanical processes suggest that new applications
of the ANN in tribology will appear in the near future.
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