
SIMULATOR FOR COOPERATION AND COMPETITION OF MOBILE ROBOTS

Claudiu Chiculita, Dan Dascalescu, Laurentiu Frangu

University of Galati, Dept. of Automatic Control, Industrial Informatics and Electronics
Claudiu.Chiculita@ugal.ro

Abstract: The paper deals with the structure and properties of a software simulator,
intended for mobile robot and autonomous agent experiments. The simulator accepts
mechanical, sensory and actuator attributes, specified by the user. It also accepts a user
written control module that contains the control law for each animate. Its main
application is the simulation of specific environments and of corresponding control laws
that allow strategy validation. The simulation applies for physical implemented agents
inclusive. The models and the software implementation of the simulator are described.

1. INTRODUCTION

The objective of this paper is to build a simulation
tool, allowing the development of experiments of
cooperation and competition in a collectivity of
mobile robots. The problems raised by the
competition between mobile robots concerns the
fulfilment of optimum criteria, in an environment in
which each team of robots modifies the conditions in
which the other teams perform. The notion of team,
in this context, accepts different numbers of robots; a
variable number of teams may be present in the
environment. The goal of each team is to maximize
its optimum criterion, before the other teams. The
simplest case of robotic competition is that in which
there are only two teams, each composed of a single
robot. As an example, the classical problem of the
prey and the predator, in which the predator hunts
after the prey, while the prey’s objective is to avoid
the capture. Obviously, the two actors have different
properties (features), so they will use different
strategies to achieve their goals. The automatic
control issues involved by this simple competition
case consist of:
- individual technique (the lower level of control

hierarchy), by which the robot interprets the
environment information, performs the
positioning operations and the interaction with
the other objects or with the competing robot;

- tactical decisions, by which the robot chooses
the appropriate response, on narrow time
intervals, to the changes in the environment;

- strategic decisions (the higher level of control
hierarchy), by which the robot anticipates the
range of possible responses to the environment
and makes changes that maximizes its optimum
criterion;

When a team has more than one member usually it is
necessary to develop cooperation between the
members. The purpose of the cooperation is to
combine the available resources in order to obtain a

superior value of the optimum criterion, compared to
the value of all individuals taken apart. For example,
the football game implies the competition between
two teams, but also the cooperation between their
members, in order to achieve victory. This is a good
example where aspects of cooperation and
competition coexist. The solving of the cooperation
problem can be done either centralized or distributed
to the team members; in the latter situation the robots
receive their objective and information about their
team-mates’ resources. During the competition, they
negotiate the possible solutions. Thus, the robots gain
an autonomous character.
Another distinct class of experiments is that in which
there are many robots, each completely autonomous,
resulting in a statistical character of the global
behaviour.

In order to validate the general solutions of the
cooperation and competition problems, and also to
study the behavior of large communities (for which
there are not enough physical resources), it is useful
to help the analysis by simulation. As a general case,
the simulators are implemented by the manufacturers
of robots, each for his robot. Some of them present
the advantage that the controlling software (validated
on the simulator), can be transferred on the physical
robots. The downside is that they do not simulate
other robots, with other dimensions, another set of
sensors or actuators, etc.

2. THE PRESENTED SIMULATOR

The simulator has the goal to implement the relations
between the concerned objects (mobile robots and
passive objects). That implies the mechanical
interactions and the sensory information capture. The
commands addressed to the robots, including those
based on tactical and strategic decisions, are issued
by a separate module (control module), written by

the user and accepted by the simulator. This one is
designed to have an open structure, in the sense that
the user is allowed to add own modules, regarding
sensors, actuators and properties of the robots.
However, these modules have to be compiled along
with the rest of the simulator, opposed to the control
module, which may be external.
An important feature of the simulator is the existence
of an unlimited number of sensors and actuators, of
different types. The sensors are very important,
provided that the simulator is intended to be used in
mobile robot and autonomous agent experiments. In
these experiments, the mechanical and sensory lack
of precision is compensated by the rich information
(as in the case of all animals). The sensory
information, used for the improvement of the robot
behaviour, depends on the positions and is part of the
loop, so it is compulsory for it to be simulated online,
simultaneously with the mechanical movement.

The simulator is used in a more complex context: it is
the starting point for building particular simulation
environments, for specific problems. For instance,
the validation of the command laws, in a mobile
robot community, proceeds as it follows:
- the properties (shape, dimensions, sensors,

actuators) of the robots and passive objects are
defined;

- the control module, containing the global goal,
the behaviour of each robot, the sensory signal
processing, the command laws, the strategic
decisions, etc., is written by the user and added
to the simulator;

- the initial positions and the stop criterion are set;
- the simulation is started and the relevant

information is recorded.
The researcher repeats the last two steps, with
different initial positions and evaluates the properties
of system endowed with that control module. If
necessary, the control module is re-written and the
last two steps are repeated.
The simulator is different with respect to the usual
game simulators, in the sense that the control module
may include the computing of the global goal
criterion, used to evaluate the effectiveness of the
control law, instead of a visual evaluation, performed
by the user.

There are two main classes of simulations that can be
built with this software:
1. Simulation of mobile robots, in order to develop
strategies that will actually be implemented on a
physical robot. In this case all the properties of the
simulated robot should be set the same as the real
ones (dimensions, weight, friction, etc.). The sensors
and the actuators should mimic those mounted on the
real robot. The sensors should return low level
information that will be interpreted by the control
algorithm of each robot and transformed into usable
information; the actuators should receive and execute
the low-level commands, necessary to completely
define the response to the environment (for instance,

the speed or the torque of the motors, driving the
wheels).

2. Simulation of agents that do not have a
correspondent physical robot or simulation of
communities that are difficult to implement in the
laboratory. Examples of such simulations are the
agents that behave like human beings (football
players) or simulation of large crowds (of people, of
ants or other). In these cases the sensors may return
preprocessed information and the actuators may work
with higher level information, which relieves the
researcher (who writes the agent brain) from having
to handle robot problems and allow him to focus on
higher level concepts; for example, a sensor could
return all visible obstacles along with their
properties, an actuator could have as input values
only the speed and orientation angle etc..

3. SOFTWARE IMPLEMENTATION

The presented simulator engine is intended to
provide the building blocks to easily construct a wide
range of custom simulators. Its applicability is
mainly in the field of mobile robots and the study of
intelligent agents. The simulator has an open
structure, in the sense that user-written modules can
be added, regarding the control algorithms, sensors
and actuators. The language chosen for
implementation was Delphi.
All objects are considered to have right edges
(spheres are an exception to this rule), and to have
approximately the same height. The simulation is
performed in 2D, so only the planar projection of the
objects it is considered. In simulation spheres and
cylindrical objects look the same (because have the
same projection) but they act differently because of
their properties (moment of inertia, friction). The
main items that can be used to build simulations are:
bodies, robots, sensors and actuators, propagation
mediums and markers.

Bodies are passive solid objects that have a circular
or polygonal shape. The properties that are taken into
account when simulating their movement are: shape,
mass, moment of inertia, friction coefficients,
elasticity, resultant force, linear and angular
velocities. The robots inherit all properties from
bodies, add some new properties (as health and
energy) and support for sensors, actuators and a local
or remote controller which will act as a brain.

The sensors and the actuators have similar
implementation, communicating with the robot
controller by means of messages . The messages are
received and maintained by each robot in a queue and
are fed to the sensors and actuators at each time step.
The sensors and the actuators have the following
common properties:
- Have an offset and orientation angle relative to

the robot they are mounted on;

- They influence the energy drain of the robot by a
specified amount (per second or per activation);

- Add weight to the robot;
- Can be limited to a maximum number of

activations per second in order not to be abused
and consume the cpu resources;

- Their precision is altered by an error coefficient,
which can change during execution;

The sensors activate in one of the situations: if they
are set to auto-activate at fixed time intervals, if the
controller requested them to, or if they receive
information from a propagation medium they are
linked to. At activation they analyse the environment
and return the results by means of messages.
The actuators activate on request and can change the
properties of the robot they are mounted on (like
speed, direction) or of other objects on the
environment (kick, pick-up, etc). For example the
driving wheels actuator (for a robot with two wheels,
differentially steered) is commanded only by two
parameters representing the speed of each wheel.
Based on the power and characteristic of the motors,
and the other properties of the robot, the two speed
parameters are transformed in linear and angular
velocity and are applied to the robot.

Simulation kernel

Objects
Database

Control
module

sensor

actuator

sensor sensor

actuator

actuator

positions

request

Figure 1.

Propagation mediums represent ways of exchanging
information in the simulated environment. Examples
of such mediums are: radio, sound, wind, smell,
bright light, etc. In order to receive information from
a specific medium, a sensor must register himself to
that medium. When an actuator emits information,
the medium decides (based on emitter and receiver
position, propagation properties and environment
configuration) which of the receivers (sensors) will
receive that information, and how attenuated this will
be.

Markers are areas on the ‚ground’ which can be used
as guides for robots or which can be tested to see if a
certain object is overlapping them.

The controller of the robot it is designed to be a
separate program and to communicate with the
simulator in a client-server manner (the simulator
plays the server role while the controller acts as
client). The client asks information from the sensors,

or receives it from the server periodically, then
computes and sends the output to the actuators.
The advantages of this architecture are:
- there are no restrictions on how clients are built

(they can be written in any programming
language) the only requirement being that the
language used for development to support
communication through TCP or UDP protocols.

- The clients can run on different machines,
performing heavy computations without
interfering with the simulation engine or with the
other clients;

This structure was mainly choose to support
competitions, where the members of each robot team
run on different computers than the simulator.
Besides the independence of resources this prevents
cheating tricks that could be directed towards the
simulator or to the other team’s controller. In order to
prevent abuse of the simulator by clients, other
different mechanisms were implemented.
The disadvantage of this approach is that each client
must implement a separate layer (in the programming
language he chose to write his controller) which
deals with the communication with the server and the
extraction and interpreting the received data.
For the very simple robots or when simulating a large
collectivity of reactive agents (that do not perform a
lot of thinking) the brain can be placed inside the
simulator, his execution being in this case
synchronous with the simulator. Figure 2 present
different ways of placing the robot controller.

Simulator

Brain 2

Brain
5+6Brain 3

2

54

3

1

Brain 4
Brain 1

Computer 1 Computer 2 Computer 3

6 7

Brain

Figure 2. Different ways of placing the robot brain.

The current physics model support dynamic
collisions between objects (having either circular or
polygonal shape) having linear and angular speed. It
also has a limited support for static interaction forces
between objects.
The motion of bodies is simulated in two dimensions
with these assumptions: bodies are rigid and do not
deform by contact or collision; the shape of an object
is polygonal or circular; collision is modelled by the
coefficient of restitution. The method used was that
of impulse-based dynamic simulation.
As long as no collisions occur the objects evolve on
their ballistic trajectories and the dynamic equations
of motion can be and calculated independently of
each other; if contact or collision occurs constraint
impulses that impose correct dynamics behaviour and
prohibit inter-penetrations of objects are applied. If
objects remain in contact after the collision is
resolved, contact forces are calculated to model the
contacts.

Calculate new position and orientation
using linear and angular velocity

Collision detection
- find collision point and normal vector

Collision response
apply impulse, calculate

new linear and
 angular velocities

Separate objects

propagation mediums - dispatch information

Activate sensors
Activate actuators

Execute local brain or
Communicate with external controller

Interaction with the exterior

modify properties

perform drawing

For each object

For each robot

Figure 3. Main simulation loop.

Time management. The server is working with
discrete time intervals. At each time interval the
dynamics of the objects are computed and the
messages from and to the sensors and actuators are
processed (Figure 3).
The Simulation steps can be chosen constants (an
interval of 10 ms being enough to perform all
calculations) or the simulation can run continuous
(the cycles succeeds one after another with no delay,
the time used for integration in one cycle being the
time spent on the previous cycle).

Graphics. Because the task of displaying the
animation of the robots is much more expensive than
the simulation (two or three orders of magnitude), the
drawing is not performed at every simulation step.
The graphic routines are also designed to have an
open structure and to be easily extended to any
graphic library. Drawing routines using the GDI,
GDIPlus and G32 libraries were implemented.

4. SETTING UP AN EXPERIMENT

As an example of how simulations are built an
experiment where a numb er of robots have the task
of clearing an area where there are scattered objects
will be set up. The robots ’ objective is to move all
these scattered objects in a certain area. They do not
have any device to pick up objects so their only
choice is to push them to the desired location. For the
physical experiment two small robots with two
differential wheels will be used which will receive
command from a computer by radio. Reaction will be
provided by a video camera placed above the
scenery. Before setting up the experiment it is
desired to first study the behaviour of the control
algorithms in simulation.

First the properties of the simulated robots
have to be set up. For the pusher robots, their
dimensions, mass, friction coefficients will be set to
the values close to the real robots. The following
sensors and actuators will be added to each of the
robots:
- Actuator for propulsion with two motors, each

connected to a wheel.
- global video camera which returns the

approximate position of all objects in the scene
- radio receiver to communicate with the other

robots
- radio emitter
The video camera will be set up to consume no
power (because is not mounted on the robot), the
propulsion and radio emitter will consume energy at
each activation, while the radio receiver will drain
energy continuously. The control algorithm of the
robots will follow these steps:

1. find the closest object that is outside the
destination area;

2. move around to the selected object’s back;
3. push the object towards the destination area,

steering it to maintain the correct course;
4. if the object slides outside the steering zone go

to step 2;
5. if the object is inside the destination area, go to

step 1;
In order to make things harder for the pusher robots,
a perturbing robot is introduced; this will be
equipped only with propulsion and a proximity
sensor. His control algorithm will be slowly wander
around, and when he detects an obstacle in front of
him, will strongly bump into it.
Because the robots control algorithms are very
simple, they will be added to the main progra m.
The environment will be populated with the
following entities:
- a radio channel that enables communication

between the two robots ;
- two pusher robots;
- one disturbing robot;
- one marker representing the destination area;
- a number of randomly placed objects;

5. CONCLUSIONS

The important feature of the simulator are tha
includes sensory information, that evolves
simultaneously with the position and other
mechanical data and the possibility to build various
derived simulators, tailored to the specific properties
of different environments.

REFERENCES

Brian Mirtich, John Canny, Impulse-based
simulation of rigid bodies, Proceedings of
Symposium on Interactive 3D Graphics, 1995

